Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists solve mystery of polyketide drug formation

03.04.2008
Discovery of enzyme role could lead to development of new drugs

Many top-selling drugs used to treat cancer and lower cholesterol are made from organic compounds called polyketides, which are found in nature but historically difficult for chemists to alter and reproduce in large quantities.

For the first time, scientists at UC Irvine have discovered how polyketides form their ringlike shape, making it easier for chemists to manipulate them into new drugs.

The key, they found, is an enzyme called aromatase/cyclase, which forms a C-shape mold in which polyketides can form one molecule at a time. By changing this mold, chemists can control the size and shape of the polyketide, resulting in the formation of new drugs.

... more about:
»Tsai »UCI »formation »polyketide »produce

“Almost every polyketide has rings in its chemical structure, and if we can control ring formation, we can produce more polyketide drugs,” said Sheryl Tsai, lead author of this study and an assistant professor of molecular biology and biochemistry and chemistry at UCI. “Until now, polyketide ring formation was a mystery that hampered our efforts to produce new drugs.”

The research appears online this week in the Proceedings of the National Academy of Sciences.

Polyketide-based drugs and products account for more than $35 billion in sales annually. They include antibiotics that can cure a bacteria infection (tetracycline and erythromycin); anti-cancer drugs used in chemotherapy (doxorubicin and mithramycin); anti-oxidants that help prevent cancer and promote heart strength (EGCG and resverastrol); and drugs that lower cholesterol levels (Zocor). Green tea and red wine also contain beneficial polyketides.

Polyketides are made naturally by bacteria, fungi, plants and marine animals. Those organisms produce polyketides to kill their predators, be it another bacteria or fungi. They can produce different types of polyketides that kill different types of enemies.

“Because bacteria do not have arthritis or diabetes, they would not evolutionally select polyketides that could be used for arthritis or diabetes treatment,” Tsai said. “But we can coax the bacteria to do precisely that, if we can control the ring formation in the polyketides.”

Prior to this study, it was not known how nature controls the polyketide ring shape, which is essential for antibiotic and anti-cancer properties.

By using molecular cloning and chemical biology techniques, Tsai and her scientific team discovered that the aromatase/cyclase enzyme has a pocket that shapes the polyketide, promoting a unique ring pattern.

Said Tsai: “We hope this will lead to the development of new drugs in such areas as cancer therapeutics, obesity treatment and stem cell research.”

UCI scientists Brian Ames, Tyler Korman, Peter Smith, Thanh Vu, along with UCLA researchers Yi Tang and Wenjun Zhang, also worked on this study, which was funded by the Pew Foundation and the National Institutes of Health.

About the University of California, Irvine: The University of California, Irvine is a top-ranked university dedicated to research, scholarship and community service. Founded in 1965, UCI is among the fastest-growing University of California campuses, with more than 27,000 undergraduate and graduate students and nearly 2,000 faculty members. The third-largest employer in dynamic Orange County, UCI contributes an annual economic impact of $3.6 billion. For more UCI news, visit www.today.uci.edu.

News Radio: UCI maintains on campus an ISDN line for conducting interviews with its faculty and experts. The use of this line is available free-of-charge to radio news programs/stations who wish to interview UCI faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

Jennifer Fitzenberger | EurekAlert!
Further information:
http://www.uci.edu

Further reports about: Tsai UCI formation polyketide produce

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>