Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists solve mystery of polyketide drug formation

03.04.2008
Discovery of enzyme role could lead to development of new drugs

Many top-selling drugs used to treat cancer and lower cholesterol are made from organic compounds called polyketides, which are found in nature but historically difficult for chemists to alter and reproduce in large quantities.

For the first time, scientists at UC Irvine have discovered how polyketides form their ringlike shape, making it easier for chemists to manipulate them into new drugs.

The key, they found, is an enzyme called aromatase/cyclase, which forms a C-shape mold in which polyketides can form one molecule at a time. By changing this mold, chemists can control the size and shape of the polyketide, resulting in the formation of new drugs.

... more about:
»Tsai »UCI »formation »polyketide »produce

“Almost every polyketide has rings in its chemical structure, and if we can control ring formation, we can produce more polyketide drugs,” said Sheryl Tsai, lead author of this study and an assistant professor of molecular biology and biochemistry and chemistry at UCI. “Until now, polyketide ring formation was a mystery that hampered our efforts to produce new drugs.”

The research appears online this week in the Proceedings of the National Academy of Sciences.

Polyketide-based drugs and products account for more than $35 billion in sales annually. They include antibiotics that can cure a bacteria infection (tetracycline and erythromycin); anti-cancer drugs used in chemotherapy (doxorubicin and mithramycin); anti-oxidants that help prevent cancer and promote heart strength (EGCG and resverastrol); and drugs that lower cholesterol levels (Zocor). Green tea and red wine also contain beneficial polyketides.

Polyketides are made naturally by bacteria, fungi, plants and marine animals. Those organisms produce polyketides to kill their predators, be it another bacteria or fungi. They can produce different types of polyketides that kill different types of enemies.

“Because bacteria do not have arthritis or diabetes, they would not evolutionally select polyketides that could be used for arthritis or diabetes treatment,” Tsai said. “But we can coax the bacteria to do precisely that, if we can control the ring formation in the polyketides.”

Prior to this study, it was not known how nature controls the polyketide ring shape, which is essential for antibiotic and anti-cancer properties.

By using molecular cloning and chemical biology techniques, Tsai and her scientific team discovered that the aromatase/cyclase enzyme has a pocket that shapes the polyketide, promoting a unique ring pattern.

Said Tsai: “We hope this will lead to the development of new drugs in such areas as cancer therapeutics, obesity treatment and stem cell research.”

UCI scientists Brian Ames, Tyler Korman, Peter Smith, Thanh Vu, along with UCLA researchers Yi Tang and Wenjun Zhang, also worked on this study, which was funded by the Pew Foundation and the National Institutes of Health.

About the University of California, Irvine: The University of California, Irvine is a top-ranked university dedicated to research, scholarship and community service. Founded in 1965, UCI is among the fastest-growing University of California campuses, with more than 27,000 undergraduate and graduate students and nearly 2,000 faculty members. The third-largest employer in dynamic Orange County, UCI contributes an annual economic impact of $3.6 billion. For more UCI news, visit www.today.uci.edu.

News Radio: UCI maintains on campus an ISDN line for conducting interviews with its faculty and experts. The use of this line is available free-of-charge to radio news programs/stations who wish to interview UCI faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

Jennifer Fitzenberger | EurekAlert!
Further information:
http://www.uci.edu

Further reports about: Tsai UCI formation polyketide produce

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>