Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study sheds light on frog malformations

19.06.2002


The emergence of mutant frogs with extra arms and legs may smack of a low-budget sci-fi script. But it is a reality, and a new study provides more evidence that ultraviolet radiation could be responsible. The findings are reported in three consecutive papers in the July 1 print issue of Environmental Science & Technology, a peer-reviewed journal of the American Chemical Society, the world’s largest scientific society.



Concern has been mounting for years over the depletion of the ozone layer — the atmospheric shield that helps block harmful ultraviolet (UV) radiation from reaching the Earth’s surface. At the same time amphibian populations have been declining, and many have been turning up with unusual malformations, such as missing or extra limbs.

A number of causes have been suggested to explain the malformations, including exposure to chemicals and parasites. Only recently have researchers been examining the potential connection to UV radiation to determine if it is coincidence or something more.


Until now, most of the research has focused on exposing frogs to UV radiation in the laboratory, providing little information about how these findings translate to natural habitats. "We really wanted to fill the gap between the findings of other laboratory research and what might happen in natural environments," said Steve Diamond, Ph.D., an environmental toxicologist at the United States Environmental Protection Agency in Duluth, Minn., and an author on all three papers.

In the first study, Diamond and his colleagues kept frog eggs in small outdoor containers while exposing them to varying degrees of UV radiation — from 25 to 100 percent of natural sunlight. As the eggs developed, the researchers observed hatching success, tadpole survival and the presence of malformations. They found that the frequency of malformations increased with increasing UV radiation, with half of the frogs experiencing malformations at 63.5 percent of the intensity of natural sunlight.

This supplements data from a previously published paper, which reported that 100 percent sunlight reduces survival by an average of 50 percent. In the course of these experiments, the researchers also determined that a specific region of the UV spectrum, known as UVB, appears to cause the malformations.

In the real world, however, frogs rarely experience 100 percent of natural sunlight. A variety of environmental factors conspire to reduce the levels of UV radiation entering wetlands, including ozone levels, cloud cover and UVB-absorbing dissolved organic carbon (DOC) in water. Accordingly, in the second study, the researchers measured DOC levels in wetlands in Wisconsin and Minnesota and found that the top five to 20 centimeters of wetlands absorb as much as 99 percent of UVB.

To complete the picture, the third study involved a survey of 26 wetlands in the same region to estimate the specific level of risk of frogs living in these environments. Using a combination of computer models, historical weather records and DOC measurements, they concluded that UVB posed a risk to amphibians living in three of the 26 wetlands.

While these findings suggest that most frogs are not currently at risk for UVB effects in this area of the country, the possibility of effects on amphibians in general should not be completely ignored, according to Diamond. Continued reduction of ozone and other global climate change effects may increase UV exposure in wetlands, suggesting that the potential risk to amphibians should continue to be studied.

Diamond’s team and a group of researchers from the National Parks are presently evaluating UVB levels across landscapes to compare them with the occurrence or absence of amphibians. "Those results," Diamond said, "combined with the risk assessment presented in these three manuscripts, will add significantly to our understanding of the relationship between UVB levels and amphibian declines or malformations.

Beverly Hassell | EurekAlert!

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>