Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists reshape Y chromosome haplogroup tree gaining new insights into human ancestry

02.04.2008
The Y chromosome retains a remarkable record of human ancestry, since it is passed directly from father to son.

In an article published online today in Genome Research (www.genome.org), scientists have utilized recently described genetic variations on the part of the Y chromosome that does not undergo recombination to significantly update and refine the Y chromosome haplogroup tree. The print version of this work will appear in the May issue of Genome Research, accompanied by a special poster of the new tree.

Human cells contain 23 pairs of chromosomes: 22 pairs of autosomes, and one pair of sex chromosomes. Females carry a pair of X chromosomes that can swap, or recombine, similar regions of DNA during meiosis. However, males harbor one X chromosome and one Y chromosome, and significant recombination between these dissimilar sex chromosomes does not occur. Therefore, the non-recombining region of the Y chromosome (NRY) remains largely unchanged over many generations, directly passed from father to son, son to grandson, and so on, along with genetic variations in the NRY that may be present. Scientists can use genetic variations, such as single nucleotide polymorphisms (SNPs), on the Y chromosome as markers of human ancestry and migration.

In 2002, the Y Chromosome Consortium (YCC) constructed a tree of 153 haplogroups based upon 243 unique genetic markers. In this report, researchers led by Dr. Michael Hammer of the University of Arizona recognized the need to revisit the Y chromosome haplogroup tree and incorporate the latest data. “The YCC effort in 2002 was a landmark in mapping the then known 300 or so Y-linked SNPs on a single tree, and getting the community to use the same nomenclature system,” explains Hammer. “The rate of SNP discovery has continued to increase over the last several years, as are publications on Y chromosome origins and affinities. While this new information is useful, ironically it also brings with it the danger of introducing more chaos into the field.”

Hammer’s group integrated more than 300 new markers into the tree, which allowed the resolution of many features that were not yet discernable, as well as the revision of previous arrangements. “The major lineages within the most common African haplogroup, E, are now all sorted out, with the topology providing new interpretations on the geographical origin of ancient sub-clades,” describes Hammer. “When one polymorphism formerly described as unique, but recently shown to have reversed was replaced by recently reported markers, a sub-haplogroup of haplogroup O, the most common in China, was considerably rearranged,” explains Fernando Mendez, a co-author of the study.

In addition to improving the resolution of branches, the latest reconstruction of the tree allows estimates of time to the most recent common ancestor of several haplogroups. “The age of [haplogroup] DE is about 65,000 years, just a bit younger than the other major lineage to leave Africa, which is assumed to be about 70,000 years old,” says Hammer, describing an example of the fine resolution of age that is now possible. “Haplogroup E is older than previously estimated, originating approximately 50,000 years ago.”

Furthermore, Hammer explains that this work has resulted in the addition of two new major haplogroups, S and T, with novel insights into the ancestry of both. “Haplogroup T, the clade that Thomas Jefferson’s Y chromosome belongs to, has a Middle Eastern affinity, while haplogroup S is found in Indonesia and Oceania.”

“More SNPs are being discovered, and we anticipate the rate to increase with the 1000 Genomes Project,” says Hammer, referring to the wealth of human genetic variation data that will soon be available. While this report represents a significant advance in mapping ancestry by Y chromosome polymorphisms, it is certain that future discoveries will necessitate continual revisions to the Y chromosome haplogroup tree, helping to further elucidate the mystery of our origins.

Peggy Calicchia | EurekAlert!
Further information:
http://www.cshl.org
http://www.genome.org

Further reports about: Chromosome Genom Human Polymorphism SNP ancestry genetic variation haplogroup

More articles from Life Sciences:

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

nachricht How gut bacteria can make us ill
18.01.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

127 at one blow...

18.01.2017 | Life Sciences

Brain-Computer Interface: What if computers could intuitively understand us

18.01.2017 | Information Technology

How gut bacteria can make us ill

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>