Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists reshape Y chromosome haplogroup tree gaining new insights into human ancestry

02.04.2008
The Y chromosome retains a remarkable record of human ancestry, since it is passed directly from father to son.

In an article published online today in Genome Research (www.genome.org), scientists have utilized recently described genetic variations on the part of the Y chromosome that does not undergo recombination to significantly update and refine the Y chromosome haplogroup tree. The print version of this work will appear in the May issue of Genome Research, accompanied by a special poster of the new tree.

Human cells contain 23 pairs of chromosomes: 22 pairs of autosomes, and one pair of sex chromosomes. Females carry a pair of X chromosomes that can swap, or recombine, similar regions of DNA during meiosis. However, males harbor one X chromosome and one Y chromosome, and significant recombination between these dissimilar sex chromosomes does not occur. Therefore, the non-recombining region of the Y chromosome (NRY) remains largely unchanged over many generations, directly passed from father to son, son to grandson, and so on, along with genetic variations in the NRY that may be present. Scientists can use genetic variations, such as single nucleotide polymorphisms (SNPs), on the Y chromosome as markers of human ancestry and migration.

In 2002, the Y Chromosome Consortium (YCC) constructed a tree of 153 haplogroups based upon 243 unique genetic markers. In this report, researchers led by Dr. Michael Hammer of the University of Arizona recognized the need to revisit the Y chromosome haplogroup tree and incorporate the latest data. “The YCC effort in 2002 was a landmark in mapping the then known 300 or so Y-linked SNPs on a single tree, and getting the community to use the same nomenclature system,” explains Hammer. “The rate of SNP discovery has continued to increase over the last several years, as are publications on Y chromosome origins and affinities. While this new information is useful, ironically it also brings with it the danger of introducing more chaos into the field.”

Hammer’s group integrated more than 300 new markers into the tree, which allowed the resolution of many features that were not yet discernable, as well as the revision of previous arrangements. “The major lineages within the most common African haplogroup, E, are now all sorted out, with the topology providing new interpretations on the geographical origin of ancient sub-clades,” describes Hammer. “When one polymorphism formerly described as unique, but recently shown to have reversed was replaced by recently reported markers, a sub-haplogroup of haplogroup O, the most common in China, was considerably rearranged,” explains Fernando Mendez, a co-author of the study.

In addition to improving the resolution of branches, the latest reconstruction of the tree allows estimates of time to the most recent common ancestor of several haplogroups. “The age of [haplogroup] DE is about 65,000 years, just a bit younger than the other major lineage to leave Africa, which is assumed to be about 70,000 years old,” says Hammer, describing an example of the fine resolution of age that is now possible. “Haplogroup E is older than previously estimated, originating approximately 50,000 years ago.”

Furthermore, Hammer explains that this work has resulted in the addition of two new major haplogroups, S and T, with novel insights into the ancestry of both. “Haplogroup T, the clade that Thomas Jefferson’s Y chromosome belongs to, has a Middle Eastern affinity, while haplogroup S is found in Indonesia and Oceania.”

“More SNPs are being discovered, and we anticipate the rate to increase with the 1000 Genomes Project,” says Hammer, referring to the wealth of human genetic variation data that will soon be available. While this report represents a significant advance in mapping ancestry by Y chromosome polymorphisms, it is certain that future discoveries will necessitate continual revisions to the Y chromosome haplogroup tree, helping to further elucidate the mystery of our origins.

Peggy Calicchia | EurekAlert!
Further information:
http://www.cshl.org
http://www.genome.org

Further reports about: Chromosome Genom Human Polymorphism SNP ancestry genetic variation haplogroup

More articles from Life Sciences:

nachricht eTRANSAFE – collaborative research project aimed at improving safety in drug development process
26.09.2017 | Fraunhofer-Gesellschaft

nachricht Beer can lift your spirits
26.09.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>