Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists reshape Y chromosome haplogroup tree gaining new insights into human ancestry

02.04.2008
The Y chromosome retains a remarkable record of human ancestry, since it is passed directly from father to son.

In an article published online today in Genome Research (www.genome.org), scientists have utilized recently described genetic variations on the part of the Y chromosome that does not undergo recombination to significantly update and refine the Y chromosome haplogroup tree. The print version of this work will appear in the May issue of Genome Research, accompanied by a special poster of the new tree.

Human cells contain 23 pairs of chromosomes: 22 pairs of autosomes, and one pair of sex chromosomes. Females carry a pair of X chromosomes that can swap, or recombine, similar regions of DNA during meiosis. However, males harbor one X chromosome and one Y chromosome, and significant recombination between these dissimilar sex chromosomes does not occur. Therefore, the non-recombining region of the Y chromosome (NRY) remains largely unchanged over many generations, directly passed from father to son, son to grandson, and so on, along with genetic variations in the NRY that may be present. Scientists can use genetic variations, such as single nucleotide polymorphisms (SNPs), on the Y chromosome as markers of human ancestry and migration.

In 2002, the Y Chromosome Consortium (YCC) constructed a tree of 153 haplogroups based upon 243 unique genetic markers. In this report, researchers led by Dr. Michael Hammer of the University of Arizona recognized the need to revisit the Y chromosome haplogroup tree and incorporate the latest data. “The YCC effort in 2002 was a landmark in mapping the then known 300 or so Y-linked SNPs on a single tree, and getting the community to use the same nomenclature system,” explains Hammer. “The rate of SNP discovery has continued to increase over the last several years, as are publications on Y chromosome origins and affinities. While this new information is useful, ironically it also brings with it the danger of introducing more chaos into the field.”

Hammer’s group integrated more than 300 new markers into the tree, which allowed the resolution of many features that were not yet discernable, as well as the revision of previous arrangements. “The major lineages within the most common African haplogroup, E, are now all sorted out, with the topology providing new interpretations on the geographical origin of ancient sub-clades,” describes Hammer. “When one polymorphism formerly described as unique, but recently shown to have reversed was replaced by recently reported markers, a sub-haplogroup of haplogroup O, the most common in China, was considerably rearranged,” explains Fernando Mendez, a co-author of the study.

In addition to improving the resolution of branches, the latest reconstruction of the tree allows estimates of time to the most recent common ancestor of several haplogroups. “The age of [haplogroup] DE is about 65,000 years, just a bit younger than the other major lineage to leave Africa, which is assumed to be about 70,000 years old,” says Hammer, describing an example of the fine resolution of age that is now possible. “Haplogroup E is older than previously estimated, originating approximately 50,000 years ago.”

Furthermore, Hammer explains that this work has resulted in the addition of two new major haplogroups, S and T, with novel insights into the ancestry of both. “Haplogroup T, the clade that Thomas Jefferson’s Y chromosome belongs to, has a Middle Eastern affinity, while haplogroup S is found in Indonesia and Oceania.”

“More SNPs are being discovered, and we anticipate the rate to increase with the 1000 Genomes Project,” says Hammer, referring to the wealth of human genetic variation data that will soon be available. While this report represents a significant advance in mapping ancestry by Y chromosome polymorphisms, it is certain that future discoveries will necessitate continual revisions to the Y chromosome haplogroup tree, helping to further elucidate the mystery of our origins.

Peggy Calicchia | EurekAlert!
Further information:
http://www.cshl.org
http://www.genome.org

Further reports about: Chromosome Genom Human Polymorphism SNP ancestry genetic variation haplogroup

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>