Researcher discovers pathway plants use to fight back against pathogens

However, it has not been known what happens between the pathogen attacks and the defense activation, until now. A new MU study revealed a very complex process that explains how plants counter attack pathogens. This discovery could potentially lead to crops with enhanced disease resistance.

“There is a chemical warfare between plants and pathogens,” said Shuqun Zhang, associate professor of biochemistry in the College of Agriculture, Food and Natural Resources and the College of Medicine. “Normally, plants put effort into growth and development. However, when plants sense pathogens, they have to use some of their energy and resources to make secondary metabolites to fight disease. Until now, very little has been known about how this process is regulated.”

According to the study, plants first sense the attack of a pathogen, and then activate defense responses by triggering a complex signaling cascade in plants. One of the defense responses is the induction and accumulation of anti-microbial defense chemicals, known as phytoalexins.

In his study, Zhang found the specific signaling path, known as a mitogen-activated protein kinase (MAPK) cascade, in the plants that ends when the defense chemical camalexin is created. Camalexin is essential for resistance to some plant diseases. Zhang used Arabidopsis, a small flowering plant and the first to have its entire genome sequenced, and Botrytis cinera, a fungal pathogen that causes grey mold disease in a number of plants including grapes and strawberries.

“By understanding at the molecular and cellular levels how plants protect themselves under adverse environmental conditions, such as pathogen attacks, we could eventually improve the disease resistance of crops,” Zhang said.

Media Contact

Jennifer Faddis EurekAlert!

More Information:

http://www.missouri.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors