Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists: New technique identifies molecular 'biomarkers' for disease

02.04.2008
University of Florida chemists are the first to use a new tool to identify the molecular signatures of serious diseases -- without any previous knowledge of what these microscopic signatures or “biomarkers” should look like.

Reported this month in the online edition of the Journal of Proteome Research, the advance could one day lead to earlier detection and improved treatment of some types of cancer as well as other diseases.

“With many diseases, the problem has been that we really don’t know what to look for,” said Weihong Tan, a professor of chemistry and the lead author of the paper. “What we’ve done is create a technique to identify the biomarkers despite that limitation.”

Doctors often diagnose cancer and other diseases based on the appearance of a tumor or a patient’s symptoms. While such traditional methods can be effective, they sometimes identify a disease only after it is established. For example, clinicians may get tipped off to the presence of lung cancer – which kills more people than any other type of cancer – based on visible images of a tumor that appear on radiological exams of a patient’s lungs.

... more about:
»Aptamer »Biomarker »diseased

Because earlier detection typically improves outcomes, doctors would like to spot disease at the molecular level, before it grows or spreads and manifests itself in more obvious and harmful ways. Given that diseased cells’ molecular structures differ from those of healthy ones, that approach should be possible, and researchers have had some success finding such “biomarkers” using antibodies, Tan said. But despite years of research, biomarkers for most diseases remain elusive or unreliable, he said.

His group turned to “aptamers,” single-strand chains of DNA or RNA that recognize and bind to target protein molecules, as a new tool. His paper reports the first-ever successful use of the aptamers to discover a molecular biomarker – in this case, one for leukemia.

Tan said his group used cell-SELEX, a process his group developed and patented.

Researchers create trillions of different varieties of aptamers in a solution. They then immerse cells known to carry the sought-after disease in the solution. After an incubation period, they rinse the cells.

The vast majority of the aptamers wash away, but those with stronger molecular affinity for the diseased cells remain. The researchers repeat the process several times, eventually shrinking the pool of aptamers to as few as 10 to 25 very strongly attached aptamers – those most closely associated with the diseased cells. Analysis then reveals these aptamers’ molecular structure, as well as the molecular structure of the cells’ biomarkers they bind to.

“As long as the molecules in question are expressed in a substantially different way on diseased and normal cells, they can be identified,” Tan said.

Rebecca Sutphen, associate professor and director of the Genetic Counseling & Testing Service at the H. Lee Moffitt Cancer Center & Research Institute in Tampa, said improved diagnosis may not be the only application of the research.

“The opportunity to identify cancer cell-specific biomarkers and potentially detect small numbers of cancer cells has many potential clinical applications, including disease detection, better imaging of tumors and even potential application for stem cells,” she said.

Other biomarkers have been found for leukemia, but none is particularly reliable, Tan said. Tan and his colleagues reported using aptamers to recognize cancer cells in a 2006 paper in the Proceedings of the National Academy of Sciences. Tan said the latest paper advances that work by revealing the target biomarkers the selected aptamers recognize, Tan said. These targets will form a molecular foundation in understanding diseases, he said.

“In 2006, we did not know what the aptamer recognized on the cancer cell surface,” he said. “In this current work, we report discovering these biomarkers, which then form the molecular foundation for us to understand the cancer and to prepare different molecular tools for molecular medicine.”

Tan said the research is particularly promising because aptamers are relatively easy and inexpensive to manufacture compared with antibodies. “This offers the potential for wider application,” he said, adding that aptamers could one day be used not only to detect disease, but also to ferry therapeutic agents to diseased cells.

Weihong Tan | EurekAlert!
Further information:
http://www.ufl.edu

Further reports about: Aptamer Biomarker diseased

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>