Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists: New technique identifies molecular 'biomarkers' for disease

02.04.2008
University of Florida chemists are the first to use a new tool to identify the molecular signatures of serious diseases -- without any previous knowledge of what these microscopic signatures or “biomarkers” should look like.

Reported this month in the online edition of the Journal of Proteome Research, the advance could one day lead to earlier detection and improved treatment of some types of cancer as well as other diseases.

“With many diseases, the problem has been that we really don’t know what to look for,” said Weihong Tan, a professor of chemistry and the lead author of the paper. “What we’ve done is create a technique to identify the biomarkers despite that limitation.”

Doctors often diagnose cancer and other diseases based on the appearance of a tumor or a patient’s symptoms. While such traditional methods can be effective, they sometimes identify a disease only after it is established. For example, clinicians may get tipped off to the presence of lung cancer – which kills more people than any other type of cancer – based on visible images of a tumor that appear on radiological exams of a patient’s lungs.

... more about:
»Aptamer »Biomarker »diseased

Because earlier detection typically improves outcomes, doctors would like to spot disease at the molecular level, before it grows or spreads and manifests itself in more obvious and harmful ways. Given that diseased cells’ molecular structures differ from those of healthy ones, that approach should be possible, and researchers have had some success finding such “biomarkers” using antibodies, Tan said. But despite years of research, biomarkers for most diseases remain elusive or unreliable, he said.

His group turned to “aptamers,” single-strand chains of DNA or RNA that recognize and bind to target protein molecules, as a new tool. His paper reports the first-ever successful use of the aptamers to discover a molecular biomarker – in this case, one for leukemia.

Tan said his group used cell-SELEX, a process his group developed and patented.

Researchers create trillions of different varieties of aptamers in a solution. They then immerse cells known to carry the sought-after disease in the solution. After an incubation period, they rinse the cells.

The vast majority of the aptamers wash away, but those with stronger molecular affinity for the diseased cells remain. The researchers repeat the process several times, eventually shrinking the pool of aptamers to as few as 10 to 25 very strongly attached aptamers – those most closely associated with the diseased cells. Analysis then reveals these aptamers’ molecular structure, as well as the molecular structure of the cells’ biomarkers they bind to.

“As long as the molecules in question are expressed in a substantially different way on diseased and normal cells, they can be identified,” Tan said.

Rebecca Sutphen, associate professor and director of the Genetic Counseling & Testing Service at the H. Lee Moffitt Cancer Center & Research Institute in Tampa, said improved diagnosis may not be the only application of the research.

“The opportunity to identify cancer cell-specific biomarkers and potentially detect small numbers of cancer cells has many potential clinical applications, including disease detection, better imaging of tumors and even potential application for stem cells,” she said.

Other biomarkers have been found for leukemia, but none is particularly reliable, Tan said. Tan and his colleagues reported using aptamers to recognize cancer cells in a 2006 paper in the Proceedings of the National Academy of Sciences. Tan said the latest paper advances that work by revealing the target biomarkers the selected aptamers recognize, Tan said. These targets will form a molecular foundation in understanding diseases, he said.

“In 2006, we did not know what the aptamer recognized on the cancer cell surface,” he said. “In this current work, we report discovering these biomarkers, which then form the molecular foundation for us to understand the cancer and to prepare different molecular tools for molecular medicine.”

Tan said the research is particularly promising because aptamers are relatively easy and inexpensive to manufacture compared with antibodies. “This offers the potential for wider application,” he said, adding that aptamers could one day be used not only to detect disease, but also to ferry therapeutic agents to diseased cells.

Weihong Tan | EurekAlert!
Further information:
http://www.ufl.edu

Further reports about: Aptamer Biomarker diseased

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>