Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hydrogen storage in nanoparticles works

02.04.2008
Dutch chemist Kees Baldé has demonstrated that hydrogen can be efficiently stored in nanoparticles. This allows hydrogen storage to be more easily used in mobile applications. Baldé discovered that 30 nanometre particles of the metal hydride sodium alanate make the favourable extraction and storage of hydrogen possible.

Hydrogen is considered to be a clean storage and transport medium for energy. Therefore many future scenarios are based on the storage and transport of hydrogen. Various obstacles need to be overcome before this so-called hydrogen economy can be used on a large scale. One of these is the storage of hydrogen. A highly-promising method for storing hydrogen is its absorption in a metal hydride. A disadvantage of this method is that hydrogen uptake and release rates are low for metal hydrides. Reducing the particle size of the metal hydride to a nanometre scale is a possible solution to this problem.

Baldé demonstrated that 30 nanometre particles of sodium alanate store hydrogen in a highly efficient manner. With the addition of a titanium catalyst, a further reduction in the particle size to 20 nanometres is possible and this leads to an even more efficient storage of hydrogen. The deactivation process of the titanium catalyst was also studied because this inhibits the uptake and release rate of hydrogen. Structural characteristics that exert an influence on the catalyst's activity were found. This knowledge can be used to develop an improved catalyst.

This project was carried out within the Sustainable Hydrogen programme of ACTS (Advanced chemicals Technology for Sustainability) under the leadership of Prof. K. de Jong and Prof. F. Habraken. ACTS is the public-private partnership within NWO in the area of sustainable chemistry and catalysis. Together with the Division for Chemical Sciences, ACTS forms the contact point for chemistry and chemical engineering related grant applications in combination with life sciences and physics.

Dr Kees Baldé | EurekAlert!
Further information:
http://www.uu.nl

Further reports about: Hydrogen hydride nanometre

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>