Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Alien'-type viruses to treat MRSA

02.04.2008
New methods that involve sticking thousands of bacteria-killing viruses to wound dressings are offering ways to prevent hospital operating theatres from spreading infections, scientists heard today (Tuesday 1 April 2008) at the Society for General Microbiology’s 162nd meeting being held this week at the Edinburgh International Conference Centre.

Although they are too small to see with the naked eye, bacteria are also attacked by viruses, but specific ones that only infect bacteria, not human or animal cells. But for bacteria they present a threat like the alien life form in the Hollywood film Alien – growing inside the bacteria and then bursting out to attack other similar bacteria, continuing their life cycle. Now doctors are harnessing these little alien creatures to help prevent the spread of hospital superbugs by developing materials impregnated with thousands of tiny beads coated in bacteria-killing viruses.

“Some bacteria specific viruses – called bacteriophages – have been used in the past to help clear up infections caused by bacteria, but their use died out when antibiotics like penicillin and methicillin became widely available”, says Janice Spencer from the University of Strathclyde in Glasgow, Scotland. “We are looking at them again now that multiple antibiotic resistant strains of bacteria have become such a problem in hospitals”.

The researchers have developed a technique to keep the viruses active for more than 3 weeks, instead of having them die after a few hours, by chemically bonding them to polymers. The polymers, including nylon, can be in various forms including microscopic beads and strips. Nylon beads can be incorporated into cleaning materials, to decontaminate operating theatres and prevent infections. The nylon can also be in the form of sutures or wound dressings to decontaminate and prevent wound infection. This limits the risk of blood poisoning, which can be life threatening. Immobilising the bacteriophages onto sutures – the hospital thread used to stitch up patients during operations – immediately kills some of the bacteria that would otherwise infect the wound. This speeds up wound healing and reduces the likelihood of the patient developing a major infection.

... more about:
»MRSA »bacteria »bacteriophage »prevent »wound

Many of the most dangerous bacteria are carried harmlessly on the skin and inside the noses of most healthy people. It is only when a patient’s immune system is weakened by illness or when the bacteria can get inside our bodies during an operation, bypassing the surface defences provided by our skin, that the bacteria develop into their most dangerous, virulent form. Once activated, some bacteria can cause such serious infections that people may die from them. If these bacteria have also acquired multiple antibiotic resistance, like MRSA, it becomes very difficult, time consuming and expensive to treat the infection.

“We’ve also developed a device to rapidly detect MRSA on contaminated surfaces. This will allow us to screen patients before surgery to limit the chances of passing on superbug infections by positively decontaminating patients and isolating them to avoid cross-contamination”, says Janice Spencer.

“Simple and effective rapid detection of bacteria is important to limit the chance of infection occurring in the first place”, says Janice Spencer. “Patients who are carriers for MRSA can be isolated and decontaminated by using standard methods or by using immobilised bacteriophages incorporated into creams or body washes”.

The prototype bacteriophage devices for detection and decontamination have been shown to clear MRSA infected surfaces such as tiles and cotton, with the bacteriophages successfully killing 96% of the MRSA strains isolated from patients in 3 different hospitals in the UK and USA.

Lucy Goodchild | EurekAlert!
Further information:
http://www.sgm.ac.uk

Further reports about: MRSA bacteria bacteriophage prevent wound

More articles from Life Sciences:

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

nachricht Warming temperatures threaten sea turtles
22.06.2017 | Swansea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

New 3-D display takes the eye fatigue out of virtual reality

22.06.2017 | Information Technology

New technique makes brain scans better

22.06.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>