Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


'Alien'-type viruses to treat MRSA

New methods that involve sticking thousands of bacteria-killing viruses to wound dressings are offering ways to prevent hospital operating theatres from spreading infections, scientists heard today (Tuesday 1 April 2008) at the Society for General Microbiology’s 162nd meeting being held this week at the Edinburgh International Conference Centre.

Although they are too small to see with the naked eye, bacteria are also attacked by viruses, but specific ones that only infect bacteria, not human or animal cells. But for bacteria they present a threat like the alien life form in the Hollywood film Alien – growing inside the bacteria and then bursting out to attack other similar bacteria, continuing their life cycle. Now doctors are harnessing these little alien creatures to help prevent the spread of hospital superbugs by developing materials impregnated with thousands of tiny beads coated in bacteria-killing viruses.

“Some bacteria specific viruses – called bacteriophages – have been used in the past to help clear up infections caused by bacteria, but their use died out when antibiotics like penicillin and methicillin became widely available”, says Janice Spencer from the University of Strathclyde in Glasgow, Scotland. “We are looking at them again now that multiple antibiotic resistant strains of bacteria have become such a problem in hospitals”.

The researchers have developed a technique to keep the viruses active for more than 3 weeks, instead of having them die after a few hours, by chemically bonding them to polymers. The polymers, including nylon, can be in various forms including microscopic beads and strips. Nylon beads can be incorporated into cleaning materials, to decontaminate operating theatres and prevent infections. The nylon can also be in the form of sutures or wound dressings to decontaminate and prevent wound infection. This limits the risk of blood poisoning, which can be life threatening. Immobilising the bacteriophages onto sutures – the hospital thread used to stitch up patients during operations – immediately kills some of the bacteria that would otherwise infect the wound. This speeds up wound healing and reduces the likelihood of the patient developing a major infection.

... more about:
»MRSA »bacteria »bacteriophage »prevent »wound

Many of the most dangerous bacteria are carried harmlessly on the skin and inside the noses of most healthy people. It is only when a patient’s immune system is weakened by illness or when the bacteria can get inside our bodies during an operation, bypassing the surface defences provided by our skin, that the bacteria develop into their most dangerous, virulent form. Once activated, some bacteria can cause such serious infections that people may die from them. If these bacteria have also acquired multiple antibiotic resistance, like MRSA, it becomes very difficult, time consuming and expensive to treat the infection.

“We’ve also developed a device to rapidly detect MRSA on contaminated surfaces. This will allow us to screen patients before surgery to limit the chances of passing on superbug infections by positively decontaminating patients and isolating them to avoid cross-contamination”, says Janice Spencer.

“Simple and effective rapid detection of bacteria is important to limit the chance of infection occurring in the first place”, says Janice Spencer. “Patients who are carriers for MRSA can be isolated and decontaminated by using standard methods or by using immobilised bacteriophages incorporated into creams or body washes”.

The prototype bacteriophage devices for detection and decontamination have been shown to clear MRSA infected surfaces such as tiles and cotton, with the bacteriophages successfully killing 96% of the MRSA strains isolated from patients in 3 different hospitals in the UK and USA.

Lucy Goodchild | EurekAlert!
Further information:

Further reports about: MRSA bacteria bacteriophage prevent wound

More articles from Life Sciences:

nachricht International team discovers novel Alzheimer's disease risk gene among Icelanders
24.10.2016 | Baylor College of Medicine

nachricht New bacteria groups, and stunning diversity, discovered underground
24.10.2016 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>