Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate changing gas from some surprising microbial liaisons

02.04.2008
The climate changing gas dimethyl sulphide (DMS) is being made by microbes at the rate of more than 200 million tonnes a year in the world’s seas, scientists heard today (Tuesday 1 April 2008) at the Society for General Microbiology’s 162nd meeting being held this week at the Edinburgh International Conference Centre.

“This gas has many different effects”, says Dr Andrew Curson from the University of East Anglia in Norwich, UK. “It triggers clouds to form over the oceans – and clouds are amongst the worlds most potent climate cooling factors; it attracts birds by alerting them to a food supply; and it smells – that typical seaside smell.”

The source of the dimethyl sulphide gas is another sulphur compound made by many seaweeds and marine plankton as an anti-stress protection. Some marine bacteria can break down this compound to release chemical energy, and dimethyl sulphide is given off as a by-product, with about 10% finding its way up into the atmosphere.

“Using genetic analysis, we showed for the first time that different types of bacteria could degrade the sulphurous compound made by phytoplankton in different ways. We even found some species of bacteria that could use multiple methods to break down and release dimethyl sulphide,” says Dr Curson.

... more about:
»Curson »bacteria »microbes »sulphide

The research identified the genes needed to make DMS, and the scientists had three surprises. The first was that different bacteria use completely different biochemical mechanisms to break down compounds from phytoplankton. Secondly, the mechanisms that scientists predicted bacteria would use were generally not the ones observed during the investigation. Finally, the scientists were surprised when they identified some “terrestrial” microbes that had never even been suspected of making dimethyl sulphide gas, which have significant ecological and evolutionary consequences.

“These multiple-use genes, which we were particularly interested in, are rampantly transferred between microbes that are very distantly related. By comparing the gene sequences to some massive databases, we could predict which other microbes could also make dimethyl sulphide, even though no-one had previously suspected that they had this ability,” says Dr Curson. “This has given us new insights into the who, the how, and the where in the world microbes are producing a gas that affects our planet in so many ways”.

“We have really only just begun to interpret our findings, and to work out how significant this is. For instance, we have very recently found dimethyl sulphide producing bacteria in the guts of herrings – what does that mean?” says Dr Curson. “We don’t yet even know the entire biochemical pathway for any of the three systems we have discovered. If we want to understand climate change better, we have lots to do.”

Lucy Goodchild | EurekAlert!
Further information:
http://www.sgm.ac.uk

Further reports about: Curson bacteria microbes sulphide

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>