Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Replacing absent microRNAs could make tumors less invasive, more treatable

One group of small, non-coding RNA molecules could serve as a marker to improve cancer staging and may also be able to convert some advanced tumors to more treatable stages, report a University of Chicago-based research team in the April 1, 2008, issue of the journal Genes & Development.

Carcinomas are cancers that develop from epithelial tissue, which lines internal and external body surfaces. When normal cells are transformed into cancer cells, this epithelial tissue can take on the characteristics of embryonic tissue, known as mesenchymal tissue, which is comprised of unspecialized cells that will develop, as the embryo matures, into more specialized tissues.

That process also goes in reverse. Epithelial to mesenchymal transition (EMT) occurs, for example, during wound healing. In cancer, however, this process can produce invasive and mobile cells that can pass through membranes and travel to distant sites, where they seed new tumors.

"There are a bewildering numbers of pathways or stimuli that can either trigger EMT or reverse that process," said study author Marcus E. Peter, PhD, professor in the Ben May Department for Cancer Research at the University of Chicago. "What we have identified is a master regulator of EMT that is probably controlled by many of these stimuli."

Peter and colleagues showed that this master regulator consists of a specific group of microRNAs, a family called miR-200. MicroRNAs are tiny RNA molecules that have very important roles in gene regulation. They have multiple targets and act mainly by attaching themselves to specific sites in messenger RNA to prevent the production of proteins.

The authors studied a standard panel of 60 established human tumor cell lines representing nine different human cancers, as well as several specimens of human primary ovarian cancer. They showed that miR-200 was always present in epithelial (less invasive) and not in mesenchymal (more invasive) types of tumors.

"The importance of this finding is, first, that miR-200 may represent a good marker to stage cancer," Peter said, and "second, that reintroducing miR-200 into late cancer cells could provide a new form of treatment, preventing these cells from going through EMT and becoming more invasive."

Physicians already have a set of fairly reliable markers for carcinoma. Tumors with high levels of E-cadherin tend to be tightly tethered to nearby cells and less likely to break free and travel to other sites. Those with high Vimentin levels represent mesenchymal cells able to pass though other tissues.

Peter and colleagues found that miR-200 added mechanistic depth to those markers. Every tumor cell line the researchers tested that had the epithelial marker E-cadherin and not the mesenchymal marker Vimentin, had high amounts of miR-200. Every cell line with high Vimentin and no E-cadherin had no detectable miR-200.

"So we were able to show a complete correlation between miR-200 and E-cadherin/Vimentin expression," Peter added.

The authors found that miR-200 microRNAs helped regulate EMT transition. They bind directly to non-coding regions in the RNA of ZEB1 and ZEB2, known blockers of E-cadherin transcription. Both ZEB proteins have previously been implicated in human malignancies, ZEB1 in aggressive colorectal and uterine cancers, and ZEB2 in advanced stages of ovarian, gastric and pancreatic tumors.

By inhibiting miR-200, Peter and his coworkers could induce EMT. More important, by introducing miR-200, they managed to activate production of E-cadherin protein and reverse tumors from a more-invasive mesenchymal into a less-invasive epithelial form.

"In a previous paper we found that another micro RNA, let-7, drives tumor progression at an earlier stage," Peter said. "Let-7 appears to be a key player in preventing a cancer from becoming more aggressive. Now we want to figure out how these two micro RNAs work together to regulate carcinogenesis."

Once they understand this process, they want to use these microRNAs to treat cancer. Both microRNA families have the connection to drug resistance as well as to cancer stem cells, sub-population of cancer cells that have self-renewal properties and the ability to give rise to new tumors that are more resistant to current therapy.

"Our aim is not only to make tumors less invasive by reintroducing let-7 and miR-200," explained Peter. "We hope that we'll make tumors more sensitive to drugs and be able to target the stem cell population, which gives tumors their renewal capacity."

"The idea is a two-hit strategy," Peter said, "hit them first with the microRNA and make those drug-resistant cells sensitive again, then hit them again with low levels of conventional chemotherapy."

John Easton | EurekAlert!
Further information:

Further reports about: E-Cadherin EMT Protein RNA epithelial invasive mesenchymal miR-200

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>