Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Potential association of type 2 diabetes genes with prostate cancer

01.04.2008
Scientists have identified six new genes which play a role in the development of type 2 diabetes, and among the group is the second gene known to also play a role in prostate cancer.

The new findings bring the total number of genes or genomic regions implicated in diabetes to 16, said Laura Scott, assistant research scientist in the Department of Biostatistics. Researchers from the University of Michigan were one of three teams of scientists in Europe and North America that led the multi-group collaboration.

The findings, which were published today in the journal Nature Genetics, provide new insights into the mechanisms which are usually responsible for the control of glucose, or sugar, levels in the blood, and to the derangements that can result in type 2 diabetes, which impacts more than 170 million people worldwide.

One of the newly discovered genes, which goes by the name of JAZF1, contains a separate variant that has recently been shown to play a role in prostate cancer, and is the second gene that appears to play a role in both conditions. The first identified overlap between genes for prostate cancer and type 2 diabetes was with HNF1B, which is also involved in an early onset form of diabetes discovered at U-M in an unrelated study, called Maturity Onset Diabetes of the Young (MODY).

... more about:
»Diabetes »prostate »prostate cancer »role »type

In HNF1B, the same variant that is associated with increased risk of diabetes is associated with decreased risk of prostate cancer. In JAZF1, the diabetes and prostate cancer variants reside in different parts of the gene and there is no known relationship between them.

"Some of these genes for type 2 diabetes might be involved in diseases other than prostate cancer, in fact there is already a known overlap with heart disease in another genomic region? Scott said. "We have about 25,000 genes, and we've found a very small number by genome wide studies, so to have the same genomic regions come up in studies of different diseases is actually pretty interesting."

Type 2 diabetes is characterized by high levels of blood sugar, caused by the body's inability to utilize insulin to move blood sugar into the cells for energy. Type 2 diabetes affects nearly 21 million in the United States and the incidence of the disease has skyrocketed in the last 30 years. Diabetes is a major cause of heart disease and stroke, as well as the most common cause of blindness, kidney failure and amputations in U.S. adults.

"The remarkable recent progress in identifying regions of the genome that increase risk to diabetes---from 3 to 16 in only a year---will help us unravel the complex basis diabetes and may suggest new and better tailored methods to prevent or treat this disease.," said U-M's Michael Boehnke, the lead scientist on the Finland-United States Investigation of Non-Insulin-Dependent Diabetes Mellitus Genetics (FUSION) study group, one of the three lead groups in the study.

The researchers in this project set out to find differences in the genetic code that contribute to individual differences in susceptibility to disease. Previous efforts from these groups and others identified ten genes contributing to type 2 diabetes risk.

Laura Bailey | EurekAlert!
Further information:
http://www.umich.edu

Further reports about: Diabetes prostate prostate cancer role type

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>