Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Potential association of type 2 diabetes genes with prostate cancer

01.04.2008
Scientists have identified six new genes which play a role in the development of type 2 diabetes, and among the group is the second gene known to also play a role in prostate cancer.

The new findings bring the total number of genes or genomic regions implicated in diabetes to 16, said Laura Scott, assistant research scientist in the Department of Biostatistics. Researchers from the University of Michigan were one of three teams of scientists in Europe and North America that led the multi-group collaboration.

The findings, which were published today in the journal Nature Genetics, provide new insights into the mechanisms which are usually responsible for the control of glucose, or sugar, levels in the blood, and to the derangements that can result in type 2 diabetes, which impacts more than 170 million people worldwide.

One of the newly discovered genes, which goes by the name of JAZF1, contains a separate variant that has recently been shown to play a role in prostate cancer, and is the second gene that appears to play a role in both conditions. The first identified overlap between genes for prostate cancer and type 2 diabetes was with HNF1B, which is also involved in an early onset form of diabetes discovered at U-M in an unrelated study, called Maturity Onset Diabetes of the Young (MODY).

... more about:
»Diabetes »prostate »prostate cancer »role »type

In HNF1B, the same variant that is associated with increased risk of diabetes is associated with decreased risk of prostate cancer. In JAZF1, the diabetes and prostate cancer variants reside in different parts of the gene and there is no known relationship between them.

"Some of these genes for type 2 diabetes might be involved in diseases other than prostate cancer, in fact there is already a known overlap with heart disease in another genomic region? Scott said. "We have about 25,000 genes, and we've found a very small number by genome wide studies, so to have the same genomic regions come up in studies of different diseases is actually pretty interesting."

Type 2 diabetes is characterized by high levels of blood sugar, caused by the body's inability to utilize insulin to move blood sugar into the cells for energy. Type 2 diabetes affects nearly 21 million in the United States and the incidence of the disease has skyrocketed in the last 30 years. Diabetes is a major cause of heart disease and stroke, as well as the most common cause of blindness, kidney failure and amputations in U.S. adults.

"The remarkable recent progress in identifying regions of the genome that increase risk to diabetes---from 3 to 16 in only a year---will help us unravel the complex basis diabetes and may suggest new and better tailored methods to prevent or treat this disease.," said U-M's Michael Boehnke, the lead scientist on the Finland-United States Investigation of Non-Insulin-Dependent Diabetes Mellitus Genetics (FUSION) study group, one of the three lead groups in the study.

The researchers in this project set out to find differences in the genetic code that contribute to individual differences in susceptibility to disease. Previous efforts from these groups and others identified ten genes contributing to type 2 diabetes risk.

Laura Bailey | EurekAlert!
Further information:
http://www.umich.edu

Further reports about: Diabetes prostate prostate cancer role type

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>