Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Potential association of type 2 diabetes genes with prostate cancer

01.04.2008
Scientists have identified six new genes which play a role in the development of type 2 diabetes, and among the group is the second gene known to also play a role in prostate cancer.

The new findings bring the total number of genes or genomic regions implicated in diabetes to 16, said Laura Scott, assistant research scientist in the Department of Biostatistics. Researchers from the University of Michigan were one of three teams of scientists in Europe and North America that led the multi-group collaboration.

The findings, which were published today in the journal Nature Genetics, provide new insights into the mechanisms which are usually responsible for the control of glucose, or sugar, levels in the blood, and to the derangements that can result in type 2 diabetes, which impacts more than 170 million people worldwide.

One of the newly discovered genes, which goes by the name of JAZF1, contains a separate variant that has recently been shown to play a role in prostate cancer, and is the second gene that appears to play a role in both conditions. The first identified overlap between genes for prostate cancer and type 2 diabetes was with HNF1B, which is also involved in an early onset form of diabetes discovered at U-M in an unrelated study, called Maturity Onset Diabetes of the Young (MODY).

... more about:
»Diabetes »prostate »prostate cancer »role »type

In HNF1B, the same variant that is associated with increased risk of diabetes is associated with decreased risk of prostate cancer. In JAZF1, the diabetes and prostate cancer variants reside in different parts of the gene and there is no known relationship between them.

"Some of these genes for type 2 diabetes might be involved in diseases other than prostate cancer, in fact there is already a known overlap with heart disease in another genomic region? Scott said. "We have about 25,000 genes, and we've found a very small number by genome wide studies, so to have the same genomic regions come up in studies of different diseases is actually pretty interesting."

Type 2 diabetes is characterized by high levels of blood sugar, caused by the body's inability to utilize insulin to move blood sugar into the cells for energy. Type 2 diabetes affects nearly 21 million in the United States and the incidence of the disease has skyrocketed in the last 30 years. Diabetes is a major cause of heart disease and stroke, as well as the most common cause of blindness, kidney failure and amputations in U.S. adults.

"The remarkable recent progress in identifying regions of the genome that increase risk to diabetes---from 3 to 16 in only a year---will help us unravel the complex basis diabetes and may suggest new and better tailored methods to prevent or treat this disease.," said U-M's Michael Boehnke, the lead scientist on the Finland-United States Investigation of Non-Insulin-Dependent Diabetes Mellitus Genetics (FUSION) study group, one of the three lead groups in the study.

The researchers in this project set out to find differences in the genetic code that contribute to individual differences in susceptibility to disease. Previous efforts from these groups and others identified ten genes contributing to type 2 diabetes risk.

Laura Bailey | EurekAlert!
Further information:
http://www.umich.edu

Further reports about: Diabetes prostate prostate cancer role type

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>