Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem Cells from Hair Follicles May Help "Grow" New Blood Vessels

01.04.2008
For a rich source of stem cells to be engineered into new blood vessels or skin tissue, clinicians may one day look no further than the hair on their patients' heads, according to new research published earlier this month by University at Buffalo engineers.

"Engineering blood vessels for bypass surgery, promoting the formation of new blood vessels or regenerating new skin tissue using stem cells obtained from the most accessible source -- hair follicles -- is a real possibility," said Stelios T. Andreadis, Ph.D., co-author of the paper in Cardiovascular Research and associate professor in the Department of Chemical and Biological Engineering in the UB School of Engineering and Applied Sciences.

Researchers from other institutions previously had shown that hair follicles contain stem cells.

In the current paper, the UB researchers demonstrate that stem cells isolated from sheep hair follicles contain the smooth muscle cells that grow new vasculature. The group recently produced data showing that stem cells from human hair follicles also differentiate into contractile smooth muscle cells.

"We have demonstrated that engineered blood vessels prepared with smooth muscle progenitor cells from hair follicles are capable of dilating and constricting, critical properties that make them ideal for engineering cardiovascular tissue regeneration," said Andreadis.

In addition to growing new skin for burn victims, cells from hair follicles could potentially be used to engineer vascular grafts and possibly regenerate cardiac tissues for patients with heart problems.

Since smooth muscle cells comprise the muscle of numerous tissues and organs, including the bladder, abdominal cavity and gastrointestinal and respiratory tracts, this new, accessible source of cells may make possible future treatments that allow for the regeneration of these damaged organs as well.

Andreadis and his colleagues previously engineered functional and implantable blood vessels with smooth muscle and endothelial cells originating from bone-marrow mesenchymal stem cells.

A key advantage of mesenchymal cells is that they typically do not trigger an immune reaction when transplanted, he said.

"Preliminary experiments in our laboratory suggest an exciting possibility -- that stem cells from hair follicles may be similar to bone-marrow mesenchymal cells," Andreadis said.

"The best case scenario is that from this one very accessible and highly proliferative source of stem cells, we will be able to obtain multiple different cell types that can be used for a broad range of applications in regenerative medicine," he said.

Co-authors on the paper are Jin Yu Liu, Ph.D., research assistant professor, and Hao Fan Peng, a doctoral candidate, both in the UB Department of Chemical and Biological Engineering.

The work was funded by the John R. Oishei Foundation of Buffalo. Previous work by Andreadis has been funded by UB's Integrative Research and Creative Activities Fund in the UB Office of the Vice President for Research.

The University at Buffalo is a premier research-intensive public university, a flagship institution in the State University of New York system that is its largest and most comprehensive campus. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

Ellen Goldbaum | EurekAlert!
Further information:
http://www.buffalo.edu

Further reports about: Andreadis Muscle Source blood vessel follicles stem cells

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>