Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem Cells from Hair Follicles May Help "Grow" New Blood Vessels

01.04.2008
For a rich source of stem cells to be engineered into new blood vessels or skin tissue, clinicians may one day look no further than the hair on their patients' heads, according to new research published earlier this month by University at Buffalo engineers.

"Engineering blood vessels for bypass surgery, promoting the formation of new blood vessels or regenerating new skin tissue using stem cells obtained from the most accessible source -- hair follicles -- is a real possibility," said Stelios T. Andreadis, Ph.D., co-author of the paper in Cardiovascular Research and associate professor in the Department of Chemical and Biological Engineering in the UB School of Engineering and Applied Sciences.

Researchers from other institutions previously had shown that hair follicles contain stem cells.

In the current paper, the UB researchers demonstrate that stem cells isolated from sheep hair follicles contain the smooth muscle cells that grow new vasculature. The group recently produced data showing that stem cells from human hair follicles also differentiate into contractile smooth muscle cells.

"We have demonstrated that engineered blood vessels prepared with smooth muscle progenitor cells from hair follicles are capable of dilating and constricting, critical properties that make them ideal for engineering cardiovascular tissue regeneration," said Andreadis.

In addition to growing new skin for burn victims, cells from hair follicles could potentially be used to engineer vascular grafts and possibly regenerate cardiac tissues for patients with heart problems.

Since smooth muscle cells comprise the muscle of numerous tissues and organs, including the bladder, abdominal cavity and gastrointestinal and respiratory tracts, this new, accessible source of cells may make possible future treatments that allow for the regeneration of these damaged organs as well.

Andreadis and his colleagues previously engineered functional and implantable blood vessels with smooth muscle and endothelial cells originating from bone-marrow mesenchymal stem cells.

A key advantage of mesenchymal cells is that they typically do not trigger an immune reaction when transplanted, he said.

"Preliminary experiments in our laboratory suggest an exciting possibility -- that stem cells from hair follicles may be similar to bone-marrow mesenchymal cells," Andreadis said.

"The best case scenario is that from this one very accessible and highly proliferative source of stem cells, we will be able to obtain multiple different cell types that can be used for a broad range of applications in regenerative medicine," he said.

Co-authors on the paper are Jin Yu Liu, Ph.D., research assistant professor, and Hao Fan Peng, a doctoral candidate, both in the UB Department of Chemical and Biological Engineering.

The work was funded by the John R. Oishei Foundation of Buffalo. Previous work by Andreadis has been funded by UB's Integrative Research and Creative Activities Fund in the UB Office of the Vice President for Research.

The University at Buffalo is a premier research-intensive public university, a flagship institution in the State University of New York system that is its largest and most comprehensive campus. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

Ellen Goldbaum | EurekAlert!
Further information:
http://www.buffalo.edu

Further reports about: Andreadis Muscle Source blood vessel follicles stem cells

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>