Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Humans have more distinctive hearing than animals

01.04.2008
Do humans hear better than animals? It is known that various species of land and water-based living creatures are capable of hearing some lower and higher frequencies than humans are capable of detecting.

However, scientists from the Hebrew University of Jerusalem and elsewhere have now for the first time demonstrated how the reactions of single neurons give humans the capability of detecting fine differences in frequencies better than animals.

They did this by utilizing a technique for recording the activity of single neurons in the auditory cortex while subjects were exposed to sound stimuli. The auditory cortex has a central role in the perception of sounds by the brain.

Current knowledge on the auditory cortex was largely based on earlier studies that traced neural activity in animals while they were exposed to sounds. And while such studies have supplied invaluable information regarding sound processing in the auditory system, they could not shed light on the human auditory system’s own distinctive attributes.

... more about:
»auditory »frequencies »neural »neurons

Experimental study of neural activity in the human auditory cortex has been limited until now to non-invasive techniques that gave only a crude picture of how the brain responds to sounds. But recently, investigators from the Hebrew University, the University of California, Los Angeles (UCLA), the Tel Aviv Sourasky Medical Center and the Weizmann Institute of Science were successful in recording activity of single neurons in the auditory cortex while the subjects were presented with auditory stimuli. They did this by utilizing an opportunity provided during an innovative and complicated clinical procedure, which traces abnormal neural activity in order to improve the success of surgical treatment of intractable epilepsy,

The researchers included Prof. Israel Nelken of the Department of Neurobiology at the Alexander Silberman Institute of Life Sciences at the Hebrew University of Jerusalem, Prof. Itzhak Fried from UCLA and Tel Aviv Medical Center, and Prof. Rafi Malach of the Weizmann Institute of Science, together with their students Roy Mukamel and Yael Bitterman. Their work was described in an article appearing in the journal Nature.

In tests measuring response to artificial sounds, the researchers found that neurons in the human auditory cortex responded to specific frequencies with unexpected precision. Frequency differences as small as a quarter of a tone (in western music, the smallest interval is half a tone) could be reliably detected from individual responses of single neurons.

Such resolution exceeds that typically found in the auditory cortex of other mammalian species (besides, perhaps, bats, which make unique use of their auditory system), serving as a possible correlate of the finding that the human auditory system can discriminate between frequencies better than animals. The result suggests that the neural representation of frequency in the human brain has unique features.

Interestingly, when the patients in the study were presented with “real-world” sounds – including dialogues, music (from "The Good, the Bad and the Ugly" soundtrack) and background noise – the neurons exhibited complex activity patterns which could not be explained based solely on the frequency selectivity of the same neurons. This phenomenon has been shown in animal studies but never before in humans.

Thus, it can be seen that in contrast to the artificial sounds, behaviorally relevant sounds such as speech and music engage additional, context-dependant processing mechanisms in the human auditory cortex.

Jerry Barach | Hebrew University
Further information:
http://www.huji.ac.il

Further reports about: auditory frequencies neural neurons

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>