Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physical activity delays onset of Huntington’s in mouse model

01.04.2008
The simple act of running in an exercise wheel delays the onset of some symptoms of Huntington’s disease in a mouse model of the fatal human disorder according to research published in the open-access journal BMC Neuroscience. These findings add insights into the pathogenesis of the disease and suggest possible preventive therapeutic targets.

Huntington’s disease affects up to one person in every 10 000, but clusters in families and certain populations. Affected people develop clusters of a defective protein in their neurons and shrinkage of brain areas associated with movement. The disorder causes disability and eventually death, but does not normally manifest until after people have had children, allowing the disease gene to be passed on.

“Although Huntington’s disease is considered the epitome of genetic determinism, environmental factors are increasingly recognised to influence the disease progress”, the researchers write.

The research team from the University of Oxford and the Howard Florey Institute, University of Melbourne, report findings of a study in mice with the genetic mutation that causes Huntington’s in humans. Just as mentally stimulating these mice by enriching their environment had previously been shown to delay onset and progression of motor symptoms, so does the simple physical activity of running in a wheel.

... more about:
»Huntington’s »Physical »Wheel »activity »delay »onset

“Of particular interest was the fact that the wheel exercise was started in juvenile mice, much earlier than in a previous study that showed more limited protective effects of physical activity”, explains Anthony Hannan of the Howard Florey Institute. This finding suggests that the protective effect has a specific time window.

Hannan notes “Physical activity did not postpone all the motor symptoms delayed by environmental enrichment, which suggests that sensory stimulation, mental exercise, and physical activity could all be used for the benefit of human sufferers”. Early intervention is also possible in people who will develop Huntington’s, because genetic diagnosis is possible.

Density of protein aggregates in neurons and shrinkage in brain regions in mice that had benefited from physical activity were as advanced as in those raised without wheels, the authors suggest therefore that benefits stem from stimulation of neuronal receptors and other molecules that prolongs normal function and delays motor deficits.

Charlotte Webber | alfa
Further information:
http://www.biomedcentral.com

Further reports about: Huntington’s Physical Wheel activity delay onset

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA laser communications to provide Orion faster connections

30.03.2017 | Physics and Astronomy

Reusable carbon nanotubes could be the water filter of the future, says RIT study

30.03.2017 | Studies and Analyses

Unique genome architectures after fertilisation in single-cell embryos

30.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>