Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

AIDS may partly be the consequence of an evolutionary accident says scientist

01.04.2008
AIDS, a fatal disease in humans, may partly be the consequence of an evolutionary accident, scientists heard today (Tuesday 1 April 2008) at the Society for General Microbiology’s 162nd meeting being held this week at the Edinburgh International Conference Centre.

“AIDS is a deadly disease in people that is caused by human immunodeficiency virus (HIV). But similar viruses such as simian immunodeficiency virus (SIV), which infects monkeys, usually don’t cause disease in their natural monkey hosts,” says Professor Frank Kirchhoff from the University of Ulm in Germany.

Previous studies have established that one of the key differences between the way HIV-1 behaves in humans and closely related SIVs behave in monkeys is that when humans are infected with HIV-1 the immune system becomes highly stimulated. This means critical defence cells called helper T cells are continuously activated and die more quickly than usual.

The researchers found that the Nef protein of most SIVs removes a molecule from the cell surface that is critical to make T cells responsive to stimulation. This most likely limits the negative effects otherwise caused by the chronically strong immune response. However, Nef proteins in HIV-1 and its closest related SIVs lack this protective function, according to Professor Kirchhoff.

... more about:
»Evolutionary »HIV-1 »Host »Nef »Protein »SIV

In natural SIV infections in monkeys, the ability of the Nef protein to remove a specific receptor, named CD3, from the infected cell’s surface may help the host animal to maintain a functional immune system, which means that it can still fight off other diseases. Only the Nef proteins of HIV-1 and its immediate SIV relatives do not perform this function.

“We suspect that this evolutionary loss of a protective function of Nef may contribute to the high virulence of HIV-1 in humans” says Prof Kirchhoff. “Well adapted viruses don’t kill their hosts.”

The team will examine whether SIVs carrying Nef genes artificially made incapable of limiting T cell activation might become more pathogenic in their natural monkey hosts. The group will also examine whether Nef variation among HIV-2 strains might explain differences in the rate of progression to disease in infected humans.

Lucy Goodchild | alfa
Further information:
http://www.sgm.ac.uk

Further reports about: Evolutionary HIV-1 Host Nef Protein SIV

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

A CLOUD of possibilities: Finding new therapies by combining drugs

24.05.2017 | Life Sciences

Carcinogenic soot particles from GDI engines

24.05.2017 | Life Sciences

A quantum walk of photons

24.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>