Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA researchers examine human embryonic stem cell genome

31.03.2008
Stem cell researchers from UCLA used a high resolution technique to examine the genome, or total DNA content, of a pair of human embryonic stem cell lines and found that while both lines could form neurons, the lines had differences in the numbers of certain genes that could control such things as individual traits and disease susceptibility.

The technique used to study the genome, which contains all the genes on 46 chromosomes, is called array CGH. The use of higher resolution techniques, such as array CGH and, soon, whole genome sequencing, will enhance the ability of researchers to examine stem cell lines to determine which are best – least likely to result in diseases and other problems – to use in creating therapies for use in humans.

Array CGH provided a much better look at the gene content on the chromosomes of human embryonic stem cells, with a resolution about 100 times better than standard clinical methods. Clinical specialists commonly generate a karyotype to examine the chromosomes of cancer cells or for amniocentesis in prenatal diagnosis, which has a much lower resolution than Array CGH, said Michael Teitell, a researcher with the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research and the senior author of the study. Small defects that could result in big problems later on could be missed using karyotyping for stem cells.

“Basically, this study shows that the genetic makeup of individual human embryonic stem cell lines is unique in the numbers of copies of certain genes that may control traits and things like disease susceptibility,” said Teitell, who also is an associate professor of pathology and laboratory medicine and a researcher at UCLA’s Jonsson Comprehensive Cancer Center. “So, in choosing stem cell lines to use for therapeutic applications, you want to know about these differences so you don’t pick a line likely to cause problems for a patient receiving these cells.”

The study appears in the March 27, 2008 express edition of the journal Stem Cells.

Differences between individual DNA sequences provide the basis for human genetic variability. Forms of variation include single DNA base pair alterations, duplications or deletions of genes or sets of genes, and translocations, a chromosomal rearrangement in which a segment of genetic material from one chromosome becomes heritably linked to another chromosome. These changes can be benign, but they can also promote diseases such as certain cancers, or confer increased risk to other diseases, such as HIV infection or certain types of kidney ailments.

In this study, Teitell and his team sought to determine copy number variants (CNVs), or differences in the numbers of certain genes, in two embryonic stem cell lines. The CNVs provide a unique genetic fingerprint for each line, which can also indicate relatedness between any two stem cell lines. Teitell used embryonic stem cell lines that made different types of neurons and studied them with array CGH for comparison. His team found CNV differences between the two lines in at least seven different chromosome locations below the level of detection using standard karyotype studies. Such differences could impact the therapeutic utility of the lines and could have implications in disease development. More studies will be required to determine the effect of specific CNVs in controlling stem cell function and disease susceptibility, he said.

“In studying embryonic stem cell lines in the future, if we find differences in regions of the genome that we know are associated with certain undesirable traits or diseases, we would choose against using such stem cells, provided safer alternative lines are available,” Teitell said.

Large genome-wide association studies are underway in a variety of diseases to determine what genetic abnormalities might be at play. When the genetic fingerprint or predisposing genes for a certain disease is discovered, it could be used as key information in screening embryonic stem cell lines.

Kim Irwin | EurekAlert!
Further information:
http://www.ucla.edu
http://www.stemcell.ucla.edu/

Further reports about: CGH CNV Chromosome Embryonic Genetic Genome Resolution embryonic stem examine

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>