Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists learn what's 'up' with a class of retinal cells in mice

31.03.2008
Treelike JAM-B cells are found responsible for detection of upward motion in mice

Harvard University researchers have discovered a new type of retinal cell that plays an exclusive and unusual role in mice: detecting upward motion. The cells reflect their function in the physical arrangement of their dendrites, branch-like structures on neuronal cells that form a communicative network with other dendrites and neurons in the brain.

The work, led by neuroscientists Joshua R. Sanes and Markus Meister, is described this week in the journal Nature.

"The structure of these cells resembles the photos you see in the aftermath of a hurricane, where all the trees have fallen down in the same direction," says Meister, the Jeff C. Tarr Professor of Molecular and Cellular Biology in Harvard's Faculty of Arts and Sciences. "When you look at these neurons in the microscope, they all point the same way. There’s no other cell type in the retina that has that degree of directionality."

... more about:
»Retina »Sanes »dendrite »identify »neurons »retinal »upward

The cells, like other retinal neurons, are composed of a round cell body surrounded by a tangle of dendrites. Most retinal neurons distribute their dendrites evenly around the cell body, but the upward motion-detecting cells arrange almost 90 percent of their dendrite tangle exclusively on one side of the cell body.

"This lopsided arrangement literally directs the cell's function, orienting the dendrites downward like roots of great trees," says Sanes, professor of molecular and cellular biology and Paul J. Finnegan Family Director of Harvard's Center for Brain Science. "Because the eye's lens acts as a camera, reversing incoming light rays as they strike the retinal tissue, an object moving up will result in a downward-moving image at the back of the eye -- the exact orientation of the cells' dendrites."

The research builds on efforts by Meister to understand neural processing in the retina, as well as work in Sanes's laboratory to identify and mark neurons in the retina using molecular tags. Recently, they tracked down a family of molecules expressed exclusively by small subsets of retinal cells in mice. One in particular, called JAM-B, was present in cells that had a peculiar distribution and orientation.

According to Sanes, developmental neurologists have long tried to identify different types of neural cells based on their function and anatomy -- how they appeared on the outside.

"But it's a huge limitation because it's essentially a qualitative assessment," he says. "We really need some way to reliably identify and track these cells if we ever hope to study their development. So the emergence of cell-specific molecular markers is a very big deal, because it will do just that. Already we've seen that it helps us identify new kinds of cells we didn't know existed before. Once we have a promising molecule, we can track down the cells that it corresponds to."

"The other important result," continues Sanes, "is that we're actually mimicking how the brain itself identifies its cells. The brain has to be able to reliably recognize and tell apart different kinds of cells, and that's going to happen on a molecular basis. In fact, it’s possible that some of the molecules we've identified are, in fact, the same molecules the brain uses to distinguish cell types."

By identifying molecules that are solely expressed by specific types of neurons, scientists hope to gain insights into how nerve cells form synapses, or connections, with other nerve cells -- in short, how the brain controls its development on a molecular basis.

For the moment, however, researchers are busy puzzling over the results of the JAM-B mouse retinal cells.

"Why in the world would mice need to develop cells to detect upward motion"" Sanes wonders. "It's a great mystery."

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

Further reports about: Retina Sanes dendrite identify neurons retinal upward

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>