Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists learn what's 'up' with a class of retinal cells in mice

31.03.2008
Treelike JAM-B cells are found responsible for detection of upward motion in mice

Harvard University researchers have discovered a new type of retinal cell that plays an exclusive and unusual role in mice: detecting upward motion. The cells reflect their function in the physical arrangement of their dendrites, branch-like structures on neuronal cells that form a communicative network with other dendrites and neurons in the brain.

The work, led by neuroscientists Joshua R. Sanes and Markus Meister, is described this week in the journal Nature.

"The structure of these cells resembles the photos you see in the aftermath of a hurricane, where all the trees have fallen down in the same direction," says Meister, the Jeff C. Tarr Professor of Molecular and Cellular Biology in Harvard's Faculty of Arts and Sciences. "When you look at these neurons in the microscope, they all point the same way. There’s no other cell type in the retina that has that degree of directionality."

... more about:
»Retina »Sanes »dendrite »identify »neurons »retinal »upward

The cells, like other retinal neurons, are composed of a round cell body surrounded by a tangle of dendrites. Most retinal neurons distribute their dendrites evenly around the cell body, but the upward motion-detecting cells arrange almost 90 percent of their dendrite tangle exclusively on one side of the cell body.

"This lopsided arrangement literally directs the cell's function, orienting the dendrites downward like roots of great trees," says Sanes, professor of molecular and cellular biology and Paul J. Finnegan Family Director of Harvard's Center for Brain Science. "Because the eye's lens acts as a camera, reversing incoming light rays as they strike the retinal tissue, an object moving up will result in a downward-moving image at the back of the eye -- the exact orientation of the cells' dendrites."

The research builds on efforts by Meister to understand neural processing in the retina, as well as work in Sanes's laboratory to identify and mark neurons in the retina using molecular tags. Recently, they tracked down a family of molecules expressed exclusively by small subsets of retinal cells in mice. One in particular, called JAM-B, was present in cells that had a peculiar distribution and orientation.

According to Sanes, developmental neurologists have long tried to identify different types of neural cells based on their function and anatomy -- how they appeared on the outside.

"But it's a huge limitation because it's essentially a qualitative assessment," he says. "We really need some way to reliably identify and track these cells if we ever hope to study their development. So the emergence of cell-specific molecular markers is a very big deal, because it will do just that. Already we've seen that it helps us identify new kinds of cells we didn't know existed before. Once we have a promising molecule, we can track down the cells that it corresponds to."

"The other important result," continues Sanes, "is that we're actually mimicking how the brain itself identifies its cells. The brain has to be able to reliably recognize and tell apart different kinds of cells, and that's going to happen on a molecular basis. In fact, it’s possible that some of the molecules we've identified are, in fact, the same molecules the brain uses to distinguish cell types."

By identifying molecules that are solely expressed by specific types of neurons, scientists hope to gain insights into how nerve cells form synapses, or connections, with other nerve cells -- in short, how the brain controls its development on a molecular basis.

For the moment, however, researchers are busy puzzling over the results of the JAM-B mouse retinal cells.

"Why in the world would mice need to develop cells to detect upward motion"" Sanes wonders. "It's a great mystery."

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

Further reports about: Retina Sanes dendrite identify neurons retinal upward

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>