Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Findings reveal how dengue virus matures, becomes infectious

Biologists at Purdue University have determined why dengue virus particles undergo structural changes as they mature in host cells and how the changes are critical for enabling the virus to infect new host cells.

The findings pertain to all viruses in the family of flaviviruses, which includes a number of dangerous insect-borne diseases such as dengue, West Nile, yellow fever and St. Louis encephalitis. Dengue is prevalent in Southeast Asia, Central America and South America. The virus, which is spread by mosquitoes, infects more than 50 million people annually, killing about 24,000 each year, primarily in tropical regions.

The researchers detailed critical changes that take place as the virus is assembled and moves from the inner to the outer portions of its host cell before being secreted so that it can infect other cells. Virus particles are exposed to progressively less acidic conditions as they traverse this "secretory pathway," and this changing acidity plays a vital role in the maturation of the virus.

"This is possibly the most detailed understanding of how any virus matures," said Michael Rossmann, the Hanley Distinguished Professor of Biological Sciences.

The research is a collaboration of work in two laboratories at Purdue, one operated by Rossmann and other operated by Jue Chen, an associate professor of biological sciences. They led the research with I-Mei Yu, a postdoctoral research associate working with Chen; and Long Li, a doctoral student working with Rossmann.

Findings are detailed in two back-to-back research papers appearing Friday (March 28) in the journal Science. The papers' co-authors include Yu, Li, Rossmann, Chen and Richard J. Kuhn, a professor and head of Purdue's Department of Biological Sciences.

Whereas the pathway for viruses entering new host cells has been studied extensively, the route for viruses moving out of their original host cells is not well-understood, Rossmann said.

"These two papers concern that route and compare the differences between both pathways," he said.

The virus moves through compartments inside the cell called the endoplasmic reticulum and the trans-Golgi network. While immature, virus particles are incapable of fusing with cell membranes, preventing them from infecting their own host cells and ensuring their maturation. Once mature, however, the virus is able to fuse to cell membranes, a trait that enables virus particles to infect new host cells, Chen said.

"There are many membranes in this trans-Golgi network, so the immature virus is always surrounded by membranes," Chen said. "In fact, the environment of the secretory pathway is very similar to what the virus encounters while it enters and infects a new host cell. So the question is, why doesn't the virus fuse to membranes on the way out""

The researchers have examined the crucial role played by the changing acidity as the immature virus travels through the compartments.

"This change in acidity was already known, but its impact on the maturation process was not known until these new findings," Rossmann said.

As a virus particle matures along the pathway through the host cell, it changes the protein structure, or "conformation," in its outer shell.

Yu mimicked the trans-Golgi network environment in test tubes, enabling the researchers to study the virus's changing structure with increasing acidity.

The surface of each virus particle contains 180 copies of a component made of two linked proteins called precursor membrane protein and envelope protein.

The precursor membrane protein prevents the immature virus from fusing with membranes by covering an attachment site in the envelope protein. During maturation, an enzyme called furin snips the connection between the two proteins, eventually exposing the envelope protein site and enabling the virus to fuse with membranes.

Yu learned, however, that the precursor membrane protein remains in place until the virus is ready to exit the original host cell. The researchers used a technique called cryoelectron microscopy to gain a more detailed view of the virus.

"So, the precursor membrane protein is retained on the virus surface even after the enzyme detaches the two proteins," Chen said. "This is a critical step because the virus is ready to mature but still is incapable of fusing with membranes until after it exits its own cell."

The researchers also determined that the environment must be acidic before the enzyme will snip the two proteins, and they examined the structure to learn specifically why the increased acidity is needed.

Li used fruit fly cells to produce large quantities of the linked proteins so that researchers could study them with a method called X-ray crystallography. Using crystallography, the researchers were able to visualize and study the combined structure of the precursor membrane and envelope proteins.

"Having a better understanding of this structure will enable us to learn why the immature form does not fuse with membranes," Rossmann said. "Ultimately, researchers might want to find ways to treat or prevent viral infections, but in order to do that we first have to learn how viruses work, how they mature and initiate infection."

To produce the complex of the two proteins, Li first had to replace the insoluble "transmembrane region" of the protein with a soluble segment, a step essential for using the fruit fly cells to manufacture the proteins. He also had to mutate the protein to remove sites where furin normally attaches, preventing the proteins from being snipped apart.

The precursor membrane protein is about as wide as 50 nanometers, or billionths of a meter, and the envelope protein is about 3 nanometers, or nearly atomic-scale. A nanometer is about the size of 10 hydrogen atoms strung together.

The research has been funded primarily by the National Institutes of Health. Rossmann's and Chen's research laboratories are affiliated with Purdue's Markey Center for Structural Biology.

One of the papers was authored by Li, postdoctoral research associate Shee-Mei Lok, Yu, graduate student Ying Zhang, Kuhn, Chen and Rossmann. The other paper was authored by Yu, research scientist Wei Zhang, technician Heather A. Holdaway, Li, postdoctoral research associate Victor A. Kostyuchenko, electron microscopist Paul R. Chipman, Kuhn, Rossmann and Chen.

Future research may focus on determining the virus's changing structure in greater detail.

Emil Venere | EurekAlert!
Further information:

Further reports about: Dengue Maturation Membrane Nanometer Precursor Rossmann acidity fuse immature infect

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>