Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Findings reveal how dengue virus matures, becomes infectious

31.03.2008
Biologists at Purdue University have determined why dengue virus particles undergo structural changes as they mature in host cells and how the changes are critical for enabling the virus to infect new host cells.

The findings pertain to all viruses in the family of flaviviruses, which includes a number of dangerous insect-borne diseases such as dengue, West Nile, yellow fever and St. Louis encephalitis. Dengue is prevalent in Southeast Asia, Central America and South America. The virus, which is spread by mosquitoes, infects more than 50 million people annually, killing about 24,000 each year, primarily in tropical regions.

The researchers detailed critical changes that take place as the virus is assembled and moves from the inner to the outer portions of its host cell before being secreted so that it can infect other cells. Virus particles are exposed to progressively less acidic conditions as they traverse this "secretory pathway," and this changing acidity plays a vital role in the maturation of the virus.

"This is possibly the most detailed understanding of how any virus matures," said Michael Rossmann, the Hanley Distinguished Professor of Biological Sciences.

The research is a collaboration of work in two laboratories at Purdue, one operated by Rossmann and other operated by Jue Chen, an associate professor of biological sciences. They led the research with I-Mei Yu, a postdoctoral research associate working with Chen; and Long Li, a doctoral student working with Rossmann.

Findings are detailed in two back-to-back research papers appearing Friday (March 28) in the journal Science. The papers' co-authors include Yu, Li, Rossmann, Chen and Richard J. Kuhn, a professor and head of Purdue's Department of Biological Sciences.

Whereas the pathway for viruses entering new host cells has been studied extensively, the route for viruses moving out of their original host cells is not well-understood, Rossmann said.

"These two papers concern that route and compare the differences between both pathways," he said.

The virus moves through compartments inside the cell called the endoplasmic reticulum and the trans-Golgi network. While immature, virus particles are incapable of fusing with cell membranes, preventing them from infecting their own host cells and ensuring their maturation. Once mature, however, the virus is able to fuse to cell membranes, a trait that enables virus particles to infect new host cells, Chen said.

"There are many membranes in this trans-Golgi network, so the immature virus is always surrounded by membranes," Chen said. "In fact, the environment of the secretory pathway is very similar to what the virus encounters while it enters and infects a new host cell. So the question is, why doesn't the virus fuse to membranes on the way out""

The researchers have examined the crucial role played by the changing acidity as the immature virus travels through the compartments.

"This change in acidity was already known, but its impact on the maturation process was not known until these new findings," Rossmann said.

As a virus particle matures along the pathway through the host cell, it changes the protein structure, or "conformation," in its outer shell.

Yu mimicked the trans-Golgi network environment in test tubes, enabling the researchers to study the virus's changing structure with increasing acidity.

The surface of each virus particle contains 180 copies of a component made of two linked proteins called precursor membrane protein and envelope protein.

The precursor membrane protein prevents the immature virus from fusing with membranes by covering an attachment site in the envelope protein. During maturation, an enzyme called furin snips the connection between the two proteins, eventually exposing the envelope protein site and enabling the virus to fuse with membranes.

Yu learned, however, that the precursor membrane protein remains in place until the virus is ready to exit the original host cell. The researchers used a technique called cryoelectron microscopy to gain a more detailed view of the virus.

"So, the precursor membrane protein is retained on the virus surface even after the enzyme detaches the two proteins," Chen said. "This is a critical step because the virus is ready to mature but still is incapable of fusing with membranes until after it exits its own cell."

The researchers also determined that the environment must be acidic before the enzyme will snip the two proteins, and they examined the structure to learn specifically why the increased acidity is needed.

Li used fruit fly cells to produce large quantities of the linked proteins so that researchers could study them with a method called X-ray crystallography. Using crystallography, the researchers were able to visualize and study the combined structure of the precursor membrane and envelope proteins.

"Having a better understanding of this structure will enable us to learn why the immature form does not fuse with membranes," Rossmann said. "Ultimately, researchers might want to find ways to treat or prevent viral infections, but in order to do that we first have to learn how viruses work, how they mature and initiate infection."

To produce the complex of the two proteins, Li first had to replace the insoluble "transmembrane region" of the protein with a soluble segment, a step essential for using the fruit fly cells to manufacture the proteins. He also had to mutate the protein to remove sites where furin normally attaches, preventing the proteins from being snipped apart.

The precursor membrane protein is about as wide as 50 nanometers, or billionths of a meter, and the envelope protein is about 3 nanometers, or nearly atomic-scale. A nanometer is about the size of 10 hydrogen atoms strung together.

The research has been funded primarily by the National Institutes of Health. Rossmann's and Chen's research laboratories are affiliated with Purdue's Markey Center for Structural Biology.

One of the papers was authored by Li, postdoctoral research associate Shee-Mei Lok, Yu, graduate student Ying Zhang, Kuhn, Chen and Rossmann. The other paper was authored by Yu, research scientist Wei Zhang, technician Heather A. Holdaway, Li, postdoctoral research associate Victor A. Kostyuchenko, electron microscopist Paul R. Chipman, Kuhn, Rossmann and Chen.

Future research may focus on determining the virus's changing structure in greater detail.

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

Further reports about: Dengue Maturation Membrane Nanometer Precursor Rossmann acidity fuse immature infect

More articles from Life Sciences:

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

nachricht Chlamydia: How bacteria take over control
28.03.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Chlamydia: How bacteria take over control

28.03.2017 | Life Sciences

A Challenging European Research Project to Develop New Tiny Microscopes

28.03.2017 | Medical Engineering

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>