Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

No laughing matter – bacteria are releasing a serious greenhouse gas

31.03.2008
Unlike carbon dioxide and methane, laughing gas has been largely ignored by world leaders as a worrying greenhouse gas. But nitrous oxide must be taken more seriously, says Professor David Richardson from the University of East Anglia in Norwich, UK, speaking today (Monday 31 March 2008) at the Society for General Microbiology’s 162nd meeting being held this week at the Edinburgh International Conference Centre.

“It only makes up 9% of total greenhouse gas emissions, but it’s got 300 times more global warming potential than carbon dioxide”, says Prof Richardson. “It can survive in the atmosphere for 150 years, and it’s recognised in the Kyoto protocol as one of the key gases we need to limit”.

The potent gas is mainly coming from waste treatment plants and agriculture. Its release is increasing at the rate of 50 parts per billion or 0.25% every year. This means that it can be better controlled with suitable management strategies, but only if the importance of nitrous oxide (N2O) is widely recognised first.

“When faced with a shortage of oxygen, many species of bacteria can switch from using oxygen to using nitrates instead”, says Prof Richardson. “Nitrates can support their respiration, the equivalent of our breathing, and bacteria can get energy through processes called denitrification and ammonification. When they do this nitrous oxide is released into the environment”.

... more about:
»Emission »Oxide »Richardson »nitrous

Municipal sewage treatment plants, landfill sites and marshy areas polluted with too much agricultural fertiliser are all places teeming with so many bacteria that there is a shortage of oxygen for all of them to survive using normal respiration alone. This means they need to use other respiratory strategies, which release nitrous oxide.

The researchers are using a combination of laboratory based studies, fieldwork and computer modelling to understand better the key environmental variables that make different micro-organisms release nitrous oxide.

“We are finding new biological routes for nitrous oxide emission that no-one ever suspected before. This could make a big impact on our environment”, says Prof Richardson. “Global warming affects everyone, and understanding the biology of nitrous oxide emissions will be an important step in mitigating their impact. We urgently need to start developing better strategies to improve management of these emissions in the agricultural and waste treatment sectors”.

Lucy Goodchild | alfa
Further information:
http://www.sgm.ac.uk

Further reports about: Emission Oxide Richardson nitrous

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>