Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neurons hard wired to tell left from right

28.03.2008
It's well known that the left and right sides of the brain differ in many animal species and this is thought to influence cognitive performance and social behaviour. For instance, in humans, the left half of the brain is concerned with language processing whereas the right side is better at comprehending musical melody.

Now researchers from UCL publishing their work in the open access journal Neural Development have pinpointed for the first time the left/right differences in how brains are wired at the level of individual cells. To do this, a research team led by Stephen Wilson looked at left and right-sided neurons (nerve cells) in a part of the brain called the habenula.

By causing habenular neurons to produce a bright green fluorescent protein they saw that they form remarkable "spiral-shaped" axons, the long nerve fibres that act as the nervous system's transmission lines.

"It's clear that the left and right halves of the brain process different types of information but almost nothing is known about the differences in the brain's circuitry which achieve this" says Wilson. "One possibility is that totally different types of neuron might be found on the left and right. Alternatively, both sides could contain the same building blocks but put them together in different ways".

... more about:
»Neuron »right »types

The researchers saw that there are two types of habenular neuron and both types can be found on both left and right sides. However, whilst most left-sided cells have spiral axons shaped into a domed crown, such neurons are not very common on the right. Instead, most right-sided cells form flat, shallow spirals, and these are formed only occasionally on the left.

"In the same way that an engineer can make different electronic circuits from the same set of electronic components, so the left and right halves of the brain use the same types of neuron but in different combinations" explains Isaac Bianco, the student who did this work as part of his PhD studies.

The left and right habenular circuits both connect to the same part of the brain and the researchers found that this target can either combine signals from the left and right or handle them independently.

"Even though language is processed largely on the left side of the human brain, people don't speak with only one half of their mouth. The brain must contain circuits which take information from the left or right and then send it on to targets on both sides of the body" says Wilson.

Charlotte Webber | alfa
Further information:
http://www.biomedcentral.com/

Further reports about: Neuron right types

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>