Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The Complexities Of Genetic Susceptibility To Tuberculosis Revealed

Researchers working in Vietnam have identified a genetic variant that predisposes people to developing a lethal form of tuberculosis (TB), tuberculous meningitis, if they are infected with a strain of TB known as the Beijing strain. The work, described in a study published March 28th in the open-access journal PLoS Pathogens, underlines the importance of studying both sides of the complex host-pathogen interaction and its role in susceptibility to disease.

TB, which is caused by the bacterium Mycobacterium tuberculosis, kills over 2 million people each year. It is estimated that well over 2 million people are infected with M. tuberculosis, though the majority will never show symptoms. Some will develop a latent infection, with symptoms only showing if they become sick or immunocompromised, for example through HIV infection.

A small number will develop an active TB infection, usually in their lungs, occasionally progressing to "disseminated TB" – a condition in which failure of the immune system to control the infection allows its spread to other parts of the body.

Some of the risk factors that determine whether individuals develop active TB following exposure are well known; these include HIV infection, malnutrition and smoking. Sarah Dunstan and colleagues from the Wellcome Trust Major Overseas Programme based at the Hospital for Tropical Diseases and the Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam previously identified the link between TB susceptibility and the role of a gene involved in the immune system, known as TLR2, which is important for recognising and initiating the defensive response when the bacterium enters the body.

People with a particular variant of TLR2, commonly found in the Vietnamese population, are particularly susceptible to developing the most severe form of TB, in which the infection spreads to the meninges, the membranes that envelope the brain and the spinal cord. One in three people who develop TB meningitis die, even amongst those who receive hospital treatment.

Now, Caws and her colleagues have shown that the predisposition to developing TB meningitis appears to be strongest in people who carry the variant of TLR2 and who are infected with the specific Beijing strain of TB.

"We are seeing an increasing number of cases of the Beijing strain worldwide, a strain that is becoming more and more resistant to drugs," says Dr Caws.

The World Health Organisation estimates that around 5% of the TB cases in the world are now multi-drug resistant. In people who have multi-drug resistant TB meningitis mortality approaches 100% because there are no effective treatment regimens.

"Our findings are important because they show that we need to look at both the patient's susceptibility to the disease and the genetics of the pathogen that is infecting them at the same time," says Dr Caws. "Many studies have shown a genetic association with disease in one population but the finding has not been repeated in different populations. This might be not only because of ethnic differences in the population, but also because the pathogen populations are different.

"Understanding the mechanisms that influence our susceptibility to infectious diseases may allow us to develop more sophisticated and targeted treatments and vaccines. This is particularly important in this era of emerging 'untreatable' bacterial infections due to antibiotic resistance."

This study was funded by the Wellcome Trust.

CITATION: Caws M, Thwaites G, Dunstan S, Hawn TR, Lan NTN, et al. (2008) The Influence of Host and Bacterial Genotype on the Development of Disseminated Disease with Mycobacterium tuberculosis. PLoS Pathog 4(3): e1000034. doi:10.1371/journal.ppat.1000034

Andrew Hyde | alfa
Further information:

Further reports about: Meningitis Tuberculosis develop strain susceptibility

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>