Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Complexities Of Genetic Susceptibility To Tuberculosis Revealed

28.03.2008
Researchers working in Vietnam have identified a genetic variant that predisposes people to developing a lethal form of tuberculosis (TB), tuberculous meningitis, if they are infected with a strain of TB known as the Beijing strain. The work, described in a study published March 28th in the open-access journal PLoS Pathogens, underlines the importance of studying both sides of the complex host-pathogen interaction and its role in susceptibility to disease.

TB, which is caused by the bacterium Mycobacterium tuberculosis, kills over 2 million people each year. It is estimated that well over 2 million people are infected with M. tuberculosis, though the majority will never show symptoms. Some will develop a latent infection, with symptoms only showing if they become sick or immunocompromised, for example through HIV infection.

A small number will develop an active TB infection, usually in their lungs, occasionally progressing to "disseminated TB" – a condition in which failure of the immune system to control the infection allows its spread to other parts of the body.

Some of the risk factors that determine whether individuals develop active TB following exposure are well known; these include HIV infection, malnutrition and smoking. Sarah Dunstan and colleagues from the Wellcome Trust Major Overseas Programme based at the Hospital for Tropical Diseases and the Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam previously identified the link between TB susceptibility and the role of a gene involved in the immune system, known as TLR2, which is important for recognising and initiating the defensive response when the bacterium enters the body.

People with a particular variant of TLR2, commonly found in the Vietnamese population, are particularly susceptible to developing the most severe form of TB, in which the infection spreads to the meninges, the membranes that envelope the brain and the spinal cord. One in three people who develop TB meningitis die, even amongst those who receive hospital treatment.

Now, Caws and her colleagues have shown that the predisposition to developing TB meningitis appears to be strongest in people who carry the variant of TLR2 and who are infected with the specific Beijing strain of TB.

"We are seeing an increasing number of cases of the Beijing strain worldwide, a strain that is becoming more and more resistant to drugs," says Dr Caws.

The World Health Organisation estimates that around 5% of the TB cases in the world are now multi-drug resistant. In people who have multi-drug resistant TB meningitis mortality approaches 100% because there are no effective treatment regimens.

"Our findings are important because they show that we need to look at both the patient's susceptibility to the disease and the genetics of the pathogen that is infecting them at the same time," says Dr Caws. "Many studies have shown a genetic association with disease in one population but the finding has not been repeated in different populations. This might be not only because of ethnic differences in the population, but also because the pathogen populations are different.

"Understanding the mechanisms that influence our susceptibility to infectious diseases may allow us to develop more sophisticated and targeted treatments and vaccines. This is particularly important in this era of emerging 'untreatable' bacterial infections due to antibiotic resistance."

This study was funded by the Wellcome Trust.

CITATION: Caws M, Thwaites G, Dunstan S, Hawn TR, Lan NTN, et al. (2008) The Influence of Host and Bacterial Genotype on the Development of Disseminated Disease with Mycobacterium tuberculosis. PLoS Pathog 4(3): e1000034. doi:10.1371/journal.ppat.1000034

Andrew Hyde | alfa
Further information:
http://www.plospathogens.org/doi/ppat.1000034

Further reports about: Meningitis Tuberculosis develop strain susceptibility

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>