Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hair loss syndrome created in mice

17.06.2002


Finding may help explain related conditions in people



Inactivating just one of more than two dozen similar genes can cause temporary but profound hair loss, known as alopecia, in mice, researchers from Johns Hopkins and the Pasteur Institute in France report in the June issue of Genes & Development.
Surprisingly, the impact of loss of this keratin 17 gene (K17) depended on an animal’s genetic make-up: its loss caused no effect in one strain of mice and complete alopecia in another, the scientists report. Mice that were a mix of the strains showed severe or moderate hair loss, or even no hair loss at all, says Pierre Coulombe, Ph.D., professor of biological chemistry at the Johns Hopkins School of Medicine.

"It’s well known that a single genetic change can cause different effects in different individuals," says Coulombe, also a faculty member in dermatology. "However, it’s unusual to be able to unravel why this happens. If we can understand how mice respond differently to the lack of K17, maybe it will help us understand what’s going on in humans with altered K17."



In people, a single genetic mutation in K17 causes two very rare, clinically distinct conditions, one involving the skin’s oil-producing glands, and the other the fingernails. No one has been able to explain how two such different conditions can result from a single change in the K17 gene and protein.

There are roughly 50 or so keratin proteins that help build the hair, nails and glands found in the skin in people, says Coulombe. Of these, about 30 are involved in specific diseases, many of which are as variable as what’s seen with K17. While they haven’t examined samples from people, the scientists suggest their results may affect research into keratin diseases in humans.

"We’ve documented in mice a clear example, specific to one structure -- hair -- and one gene, in which genetic background has a profound impact on the severity of a condition," says Coulombe. "It raises the possibility that the genetics of a person might explain variability in human keratin diseases."

In mice that kept their hair in the absence of K17, a related molecule, keratin 16 (K16), took up the slack, the scientists found. "Mice that lost hair failed to compensate for K17; K16 didn’t step in," says Coulombe, a researcher in the school’s Institute for Basic Biomedical Sciences. "What triggers K16 to make up for K17 in certain mice and not in others? The answer is going to be more complex than K16 itself."

The findings raise the possibility that proposed gene therapy for keratin-related diseases, or potentially others, could be less precise in their application than expected, says Coulombe.

"People talk about gene therapy as ’molecular genomic surgery,’ as going in to the genetic information and slicing out what’s wrong and inserting a corrected version," he explains. "But this study shows we may not need to be so sophisticated. For K17 diseases, for instance, perhaps it would be possible to identify and increase production of a compensatory keratin, without causing negative effects, and alleviate the condition."

In the original group of mice, each a cross of strains 129/Sv and C57Bl/6, animals were born with normal hair. By 5 days of age, some of the mice lacking K17 failed to grow their first round of postnatal hair. By three weeks of age, however, when the second cycle of hair production in mice begins, even the most severely affected mice re-grew hair and appeared normal.

In subsequent experiments, the scientists discovered that pure 129/Sv mice were not affected by the loss of K17, while pure C57Bl/6 mice lost all their hair. The 129/Sv mice somehow stimulated K16 to make up for the lack of K17, they found.

The results also help reveal K17’s role in hair follicles in mice. Hair loss was due primarily to two flaws caused by the lack of K17: weaker strands of hair and a propensity for a key part of the hair follicle to die. Because all mice re-grew hair, even if K16 wasn’t stimulated, K17 is more important in the first hair cycle after birth than subsequent hair cycles, the researchers report.


The studies were funded by grants from the U.S. National Cancer Institute, the U.S. National Institute of Arthritis and Musculoskeletal and Skin Diseases, the French National Center for Scientific Research (CNRS) and the Pasteur Institute, Paris. Other authors on the report are co-first authors Kevin McGowan and Xuemei Tong of the Johns Hopkins School of Medicine; Emma Colucci-Guyon, Francina Langa and Charles Babinet of the CNRS and Pasteur Institute.

Joanna Downer | EurekAlert
Further information:
http://www.genesdev.org

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>