Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Death by color: spiny spiders’ bright stripes don’t alarm but attract prey, Cornell behavior scientist discovers

14.06.2002


Like the glitter and glare of Las Vegas beckoning tourists to the gambling tables, the orb-weaving spiny spider flashes its colorful back to lure unsuspecting quarry into its web. The discovery of this lethal use of color runs contrary to the long-held belief that in the animal kingdom color is used generally to attract mates rather than to entice prey, says a Cornell University animal behavior researcher



"Attraction is all casinos are about. They lure you; they want to get you there. They lure people with bright lights, cheap plane tickets, inexpensive hotel rooms, great shows and great meals," says Mark E. Hauber of Cornell’s Department of Neurobiology and Behavior. "The spiny spiders work the same way."

Hauber’s discovery will be described in a forthcoming issue of the Royal Entomological Society journal Ecological Entomology (September 2002), in an article, "Colouration attracts prey to a stationary predator."


Bright colors and contrasting patterns should be rare in predators that use traps, since conspicuous body color is scientifically counter-intuitive in stationary predators, says Hauber. Generally, he says, animals use "sit-and-wait" tactics in their concealed traps to capture prey, and colors and patterns only alert potential prey. Yet orb-weaving arachnids, such as the spiny spiders of Australia, are brightly colored and have contrasting patterns on their bodies. Hauber found that the more colorful their backs, the greater their chances of catching prey.

"It goes against what most scientists would have thought. Color is an attracting feature," says Hauber. "While color on animals like parrots allows them to blend into the colorful rain forest, other animals use color to attract mates. In this case, the color lures prey to the web. Perhaps the color itself may look like flowers to the insects that eventually become entrapped in the web," he says.

Hauber observed spiny spiders (Gasteracantha fornicata ) in northeastern Australia. He covered the yellow-black striped dorsal surface on the spiders’ backs with ink from a black felt-tip pen. Spiders with the black dorsal surface caught less prey than spiders with their normal colorful stripes. Repeatedly he found that the blackened spiny spider always attracted and caught less prey.

"Perhaps the colors and patterns of their dorsal surface mimic the color of food -- such as flowers -- for visually oriented prey. It is also possible that the dorsal surface of the spiny spider is highly reflective in the ultraviolet part of the spectrum," he says. "Many flies, mosquitoes and gnats are attracted to bright light, and the kind of light rich in ultraviolet spectra, because these indicate the presence of field clearings adjacent to dense forests."

Hauber also learned that spiny spiders set their webs at an angle and that they sit on the underside of their webs with their backs to the ground. This suggests, says Hauber, that sun and nearby vegetation offer camouflage for the web. "Daytime web-building and hunting, along with the web placement and orientation, is consistent with behavior that attracts prey traveling from darker areas to lighter ones," says Hauber.

Funding for the research came from the Howard Hughes Medical Institute Predoctoral Fellowship program

Blaine P. Friedlander Jr. | EurekAlert

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>