Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Death by color: spiny spiders’ bright stripes don’t alarm but attract prey, Cornell behavior scientist discovers


Like the glitter and glare of Las Vegas beckoning tourists to the gambling tables, the orb-weaving spiny spider flashes its colorful back to lure unsuspecting quarry into its web. The discovery of this lethal use of color runs contrary to the long-held belief that in the animal kingdom color is used generally to attract mates rather than to entice prey, says a Cornell University animal behavior researcher

"Attraction is all casinos are about. They lure you; they want to get you there. They lure people with bright lights, cheap plane tickets, inexpensive hotel rooms, great shows and great meals," says Mark E. Hauber of Cornell’s Department of Neurobiology and Behavior. "The spiny spiders work the same way."

Hauber’s discovery will be described in a forthcoming issue of the Royal Entomological Society journal Ecological Entomology (September 2002), in an article, "Colouration attracts prey to a stationary predator."

Bright colors and contrasting patterns should be rare in predators that use traps, since conspicuous body color is scientifically counter-intuitive in stationary predators, says Hauber. Generally, he says, animals use "sit-and-wait" tactics in their concealed traps to capture prey, and colors and patterns only alert potential prey. Yet orb-weaving arachnids, such as the spiny spiders of Australia, are brightly colored and have contrasting patterns on their bodies. Hauber found that the more colorful their backs, the greater their chances of catching prey.

"It goes against what most scientists would have thought. Color is an attracting feature," says Hauber. "While color on animals like parrots allows them to blend into the colorful rain forest, other animals use color to attract mates. In this case, the color lures prey to the web. Perhaps the color itself may look like flowers to the insects that eventually become entrapped in the web," he says.

Hauber observed spiny spiders (Gasteracantha fornicata ) in northeastern Australia. He covered the yellow-black striped dorsal surface on the spiders’ backs with ink from a black felt-tip pen. Spiders with the black dorsal surface caught less prey than spiders with their normal colorful stripes. Repeatedly he found that the blackened spiny spider always attracted and caught less prey.

"Perhaps the colors and patterns of their dorsal surface mimic the color of food -- such as flowers -- for visually oriented prey. It is also possible that the dorsal surface of the spiny spider is highly reflective in the ultraviolet part of the spectrum," he says. "Many flies, mosquitoes and gnats are attracted to bright light, and the kind of light rich in ultraviolet spectra, because these indicate the presence of field clearings adjacent to dense forests."

Hauber also learned that spiny spiders set their webs at an angle and that they sit on the underside of their webs with their backs to the ground. This suggests, says Hauber, that sun and nearby vegetation offer camouflage for the web. "Daytime web-building and hunting, along with the web placement and orientation, is consistent with behavior that attracts prey traveling from darker areas to lighter ones," says Hauber.

Funding for the research came from the Howard Hughes Medical Institute Predoctoral Fellowship program

Blaine P. Friedlander Jr. | EurekAlert

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>