Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Death by color: spiny spiders’ bright stripes don’t alarm but attract prey, Cornell behavior scientist discovers

14.06.2002


Like the glitter and glare of Las Vegas beckoning tourists to the gambling tables, the orb-weaving spiny spider flashes its colorful back to lure unsuspecting quarry into its web. The discovery of this lethal use of color runs contrary to the long-held belief that in the animal kingdom color is used generally to attract mates rather than to entice prey, says a Cornell University animal behavior researcher



"Attraction is all casinos are about. They lure you; they want to get you there. They lure people with bright lights, cheap plane tickets, inexpensive hotel rooms, great shows and great meals," says Mark E. Hauber of Cornell’s Department of Neurobiology and Behavior. "The spiny spiders work the same way."

Hauber’s discovery will be described in a forthcoming issue of the Royal Entomological Society journal Ecological Entomology (September 2002), in an article, "Colouration attracts prey to a stationary predator."


Bright colors and contrasting patterns should be rare in predators that use traps, since conspicuous body color is scientifically counter-intuitive in stationary predators, says Hauber. Generally, he says, animals use "sit-and-wait" tactics in their concealed traps to capture prey, and colors and patterns only alert potential prey. Yet orb-weaving arachnids, such as the spiny spiders of Australia, are brightly colored and have contrasting patterns on their bodies. Hauber found that the more colorful their backs, the greater their chances of catching prey.

"It goes against what most scientists would have thought. Color is an attracting feature," says Hauber. "While color on animals like parrots allows them to blend into the colorful rain forest, other animals use color to attract mates. In this case, the color lures prey to the web. Perhaps the color itself may look like flowers to the insects that eventually become entrapped in the web," he says.

Hauber observed spiny spiders (Gasteracantha fornicata ) in northeastern Australia. He covered the yellow-black striped dorsal surface on the spiders’ backs with ink from a black felt-tip pen. Spiders with the black dorsal surface caught less prey than spiders with their normal colorful stripes. Repeatedly he found that the blackened spiny spider always attracted and caught less prey.

"Perhaps the colors and patterns of their dorsal surface mimic the color of food -- such as flowers -- for visually oriented prey. It is also possible that the dorsal surface of the spiny spider is highly reflective in the ultraviolet part of the spectrum," he says. "Many flies, mosquitoes and gnats are attracted to bright light, and the kind of light rich in ultraviolet spectra, because these indicate the presence of field clearings adjacent to dense forests."

Hauber also learned that spiny spiders set their webs at an angle and that they sit on the underside of their webs with their backs to the ground. This suggests, says Hauber, that sun and nearby vegetation offer camouflage for the web. "Daytime web-building and hunting, along with the web placement and orientation, is consistent with behavior that attracts prey traveling from darker areas to lighter ones," says Hauber.

Funding for the research came from the Howard Hughes Medical Institute Predoctoral Fellowship program

Blaine P. Friedlander Jr. | EurekAlert

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>