Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein protects embryonic stem cells' versatility and self-renewal

25.03.2008
M. D. Anderson team connects REST to regenerative medicine, pediatric brain cancer

A protein known as REST blocks the expression of a microRNA that prevents embryonic stem cells from reproducing themselves and causes them to differentiate into specific cell types, scientists at The University of Texas M. D. Anderson Cancer Center report in the journal Nature.

Researchers show RE1-silencing transcription factor (REST) plays a dual role in embryonic stem cells, said senior author Sadhan Majumder, Ph.D., professor in M. D. Anderson’s Department of Cancer Genetics. "It maintains self-renewal, or the cell’s ability to make more and more cells of its own type, and it maintains pluripotency, meaning that the cells have the potential to become any type of cell in the body."

The paper posted online March 23 in advance of publication grew from M. D. Anderson research on the protein’s role in medulloblastoma – an exceptionally aggressive pediatric brain cancer.

Embryonic stem cells are essentially blank slates. They have the unique ability to develop from identical, unspecialized cells and then differentiate into distinct types of cells with special functions. In the laboratory, scientists have been able to induce embryonic stem cells to develop into heart muscle cells or insulin-producing cells of the pancreas. The hope is that embryonic stem cells might one day be used to restore or replace failing cells in the human body and perhaps treat a wide range of diseases.

"Embryonic stem cells have a very high potential in medicine," Majumder said. "The critical thing is to learn the mechanisms that could be used to generate a lot of self-renewing embryonic stem cells and be able to differentiate them into various cell types." REST could play a key role in maintaining a steady supply of these cells and in preserving their differentiation capability.

Suppressing MicroRNA-21

In studies using mouse embryonic stem cells, the researchers found that REST disarms a specific microRNA called microRNA-21 or miR-21. MicroRNAs are tiny pieces of RNA that control gene expression by binding to the gene’s messenger RNA.

The team found that MiR-21 suppresses embryonic stem cell self-renewal and is associated with a corresponding loss of expression of critical self-renewal regulators, such as Oct4, Nanog, Sox2 and c-Myc. REST counters this by suppressing miR-21 to preserve the cells’ self-renewal and pluripotency.

The researchers discovered the roles of REST and miR-21 in a series of experiments using cultured mouse embryonic stem cells in either a self-renewal state or a differentiating state. They found that REST expression was significantly higher in the self-renewal state. Withdrawing REST reduced the stem cells’ ability to reproduce themselves and started differentiation — even when the cells were grown under conditions conducive to self-renewal. Adding REST to differentiating cells maintained their self-renewal.

These experiments also revealed that REST is bound to the gene chromatin of a set of microRNAs with the potential to target self-renewal genes. REST controls transcription of 11 microRNAs.

REST Implicated in Pediatric Brain Cancer

Previous laboratory research suggests that the qualities that make REST beneficial in stem cell production and pluripotency may contribute to the development of medulloblastoma, an aggressive type of children’s brain tumor. Medulloblastomas are believed to develop from undifferentiated neural stem cells in the external granule layer of the cerebellum.

In earlier research, Majumder’s group at M. D. Anderson discovered that about half of these tumors overexpress REST, which is not found in most neural cells. "We found that REST is a critical factor in this group of children’s brain tumors," Majumder said, "and that its major function is to keep a group of specific brain stem cells, or progenitor cells, in a state of stemness."

The researchers hypothesize that by maintaining the neural stem cells’ ‘stemness,’ REST prevents their differentiation into normal and distinct types of cells, leading instead to tumor formation. The M. D. Anderson scientists are now exploring whether microRNAs might also play a role in medulloblastomas.

Understanding REST function has applications in both medulloblastoma and embryonic stem cell biology. "Just as blocking REST function has therapeutic potential in medulloblastoma, blocking REST function to allow for differentiation of embryonic stem cells is a potentially critical step in regenerative medicine," Majumder said.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>