Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Florida scientists develop a process to disrupt hepatitis C virion production

25.03.2008
Findings offer hope for new therapies

HCV is a significant human pathogen, infecting more than three percent of the world’s population. The incidence of infection in the United States has been estimated to be as high as 4 million cases.

In the March issue of the journal PLoS Pathogens, Timothy Tellinghuisen, an assistant professor in the Department of Infectology at Scripps Florida, and his colleagues describe how they used mutations of the viral NS5A phosphoprotein to disrupt virus particle production at an early stage of assembly. NS5A has long been proposed as a regulator of events in the HCV life cycle, but exactly how it orchestrates these events has been unclear.

“The interesting thing about this mutant is that while it triggers totally normal RNA replication, it causes severe defects in the output of infectious virus—in fact, it releases no infectious virus that we can detect,” says Tellinghuisen. “And though this discovery isn’t a cure for HCV, it is an important research tool that stops the assembly pathway.” Total disruption of the replication process would be a cure for the disease, he adds, and that’s the team’s long-term goal.

HCV infection is roughly five to seven times more prevalent than HIV, underscoring the pandemic nature of HCV infection. HCV occurs when blood from an infected person enters the body of someone who is not infected. Most new HCV infections are due to illegal drug injections and sharing needles. However, those who had blood transfusions prior to blood donor screening in 1991, healthcare workers who had needle stick accidents, and hemodialysis patients are also at risk for developing HCV infection. The virus predominantly infects the liver, and following many decades of virus reproduction serious disease such as hepatitis (liver inflammation), cirrhosis (liver scarring), and carcinoma (liver cancer) develop. Ultimately, HCV infection destroys the liver, resulting in death. Attempts at curing HCV infections with drug therapy have been only marginally successful.

Before more effective therapies can be developed, scientists need to understand, at the molecular level, the detailed mechanisms HCV uses to infect cells, replicate itself, assemble progeny virus, and exit the cell. Each of these processes could potentially be a target for a new drug to eliminate HCV infection. HCV, like all viruses, requires the normal cellular machinery for its replication and has developed strategies to utilize normal cell physiology for its own benefit (often to the detriment of the host).

The Tellinghuisen team, which includes Research Assistants Katie L. Foss and Jason Treadaway, has focused recent efforts on NS5A to understand the regulation of events used by the virus to assemble infectious copies of itself and exit the cell. NS5A is a three-domain protein, which means it is comprised of three compactly folded regions roughly 50 to 300 amino acids in length. The requirement of domains I and II for RNA replication is well documented. NS5A domain III, however, is not required for RNA replication, and the function of this region in the HCV life cycle is unknown.

Using standard molecular biology, the researchers removed from domain III of NS5A a coding sequence corresponding to roughly 15 amino acids. Then they generated a clone of the virus, transcribed the RNA from that clone, and purified the RNA. This RNA, which is directly infectious, was then transfected into a liver cell line where it produced all the HCV proteins that are encoded by that RNA genome.

“Those proteins assemble in the cell to make a structure called a replicase that then copies the viral RNA,” Tellinghuisen explains. “We measured that RNA accumulation and observed no defect in RNA replication, but found, surprisingly, that no infectious viral particles were released from the cells.” The team also found that no viral RNA nor nucleocapsid protein are released from cells, indicating that an early event in virus assembly had been affected.

Using genetic mapping and biochemical analyses, the authors were able to show that their deletion altered a phosphorylation signal controlling the switch from RNA replication to virus particle assembly. This signal was attributed to the activity of a cellular kinase that when inhibited by genetic or chemical means led to a reduction in infectious virus production without altering HCV RNA replication.

“These data provide the first evidence for a function of domain III of NS5A and implicate NS5A as an important regulator of the RNA replication and virion assembly of HCV,” Tellinghuisen says. “The ability to uncouple virus production from RNA replication may be useful in understanding HCV assembly and may become therapeutically important.”

Charles M. Rice, head of the Center for the Study of Hepatitis C at Rockefeller University, comments, “This is a spectacular advance linking a specific phosphorylation event by a cellular kinase to hepatitis C virus assembly. Remarkably, the target is a viral nonstructural protein, NS5A, and the data point to a pivotal role for this protein in regulating RNA amplification and infectious virus production. These new data make this multifunctional protein an even more attractive target for developing new anti-virals for treating hepatitis C.”

This project was funded by a Career Development Award from the National Institutes of Allergy and Infectious Diseases of the National Institutes of Health, and by the State of Florida.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations, at the forefront of basic biomedical science that seeks to comprehend the most fundamental processes of life. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neurosciences, autoimmune, cardiovascular, and infectious diseases, and synthetic vaccine development. Established in its current configuration in 1961, it employs approximately 3,000 scientists, postdoctoral fellows, scientific and other technicians, doctoral degree graduate students, and administrative and technical support personnel. Scripps Research is headquartered in La Jolla, California. It also includes Scripps Florida, whose researchers focus on basic biomedical science, drug discovery, and technology development. Currently operating from temporary facilities in Jupiter, Scripps Florida will move to its permanent campus in 2009.

For information:

Keith McKeown
858-784-8134
kmckeown@scripps.edu

Keith McKeown | EurekAlert!
Further information:
http://www.scrpps.edu

Further reports about: Cellular HCV HCV infection Infection NS5A RNA Tellinghuisen Viral develop infect replication

More articles from Life Sciences:

nachricht The world's tiniest first responders
21.06.2018 | University of Southern California

nachricht A new toxin in Cholera bacteria discovered by scientists in Umeå
21.06.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>