Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Subterfuge, counter-surveillance and assassination: scientists reveal the body’s fight with cervical cancer

25.03.2008
The virus responsible for most cases of cervical cancer has a serious weakness which may provide hope for new treatments for the disease.

Human Papillomavirus (HPV), a virus which causes several types of cancer but is particularly associated with cervical cancer, has developed clever ways of hiding in the body, but researchers at the University of Leeds have found that its ability to trick the body’s first line of defence leaves it vulnerable to attack from a second defence system.

When viruses enter cells, they produce proteins to assist their growth and replication, and the body’s immune system is programmed to recognise and attack these non-native proteins.

Professor Eric Blair of the University’s Faculty of Biological Sciences and Dr Graham Cook from the Leeds Institute for Molecular Medicine have been specifically looking at one of the proteins produced by HPV, called E7, and have discovered that it suppresses markers on the cell surface, making infected cells much less visible to T cells, one of the body’s key defence systems.

... more about:
»HPV »Protein »cervical »mechanism

“T cells can normally tell when there are molecules in the body that shouldn't be there and activate an immune response,” says Professor Blair. “But HPV uses the E7 protein to hide from them. We've always known the virus has clever ways of defending itself, but we now know how one of its main defence mechanism works.”

However, in a twist that offers hope for the development of potential new therapies for cervical cancer, Professor Blair and Dr Cook have also discovered that this subterfuge may be the virus’s downfall.

Cells without surface protein markers are targeted by another of the body’s white blood cell armoury, Natural Killer cells - cellular assassins, which when activated, release specialised enzymes into target cells to kill them.

“Despite the body’s valiant efforts to ward off the virus, women are still contracting this awful disease, so there are clearly other mechanisms at work. We need to look at the role of the other components of the virus, to see if they prevent the Natural Killer cells from attacking,” says Professor Blair. “For example, we’ve started examining the contribution of the virus protein E6, which we believe works in partnership with E7. The recent introduction of a vaccine against HPV is an important development in the fight against cervical cancer. However, it may take many years for the vaccine to reduce the number of cases of this cancer and other approaches to eliminating tumour cells need to be discovered.”

This research was funded by Yorkshire Cancer Research, the charity’s Chief Executive, Elaine King commented: “Human Papillomavirus is extremely complex with many mechanisms affecting how it operates. However, through this research we have discovered how the E7 protein works, which is a huge step forward, and will hopefully help us to develop effective ways to combat Human Papillomavirus in the future.”

Jo Kelly | alfa
Further information:
http://www.leeds.ac.uk

Further reports about: HPV Protein cervical mechanism

More articles from Life Sciences:

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

Oxygen can wake up dormant bacteria for antibiotic attacks

08.12.2016 | Health and Medicine

Newly discovered bacteria-binding protein in the intestine

08.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>