Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Subterfuge, counter-surveillance and assassination: scientists reveal the body’s fight with cervical cancer

25.03.2008
The virus responsible for most cases of cervical cancer has a serious weakness which may provide hope for new treatments for the disease.

Human Papillomavirus (HPV), a virus which causes several types of cancer but is particularly associated with cervical cancer, has developed clever ways of hiding in the body, but researchers at the University of Leeds have found that its ability to trick the body’s first line of defence leaves it vulnerable to attack from a second defence system.

When viruses enter cells, they produce proteins to assist their growth and replication, and the body’s immune system is programmed to recognise and attack these non-native proteins.

Professor Eric Blair of the University’s Faculty of Biological Sciences and Dr Graham Cook from the Leeds Institute for Molecular Medicine have been specifically looking at one of the proteins produced by HPV, called E7, and have discovered that it suppresses markers on the cell surface, making infected cells much less visible to T cells, one of the body’s key defence systems.

... more about:
»HPV »Protein »cervical »mechanism

“T cells can normally tell when there are molecules in the body that shouldn't be there and activate an immune response,” says Professor Blair. “But HPV uses the E7 protein to hide from them. We've always known the virus has clever ways of defending itself, but we now know how one of its main defence mechanism works.”

However, in a twist that offers hope for the development of potential new therapies for cervical cancer, Professor Blair and Dr Cook have also discovered that this subterfuge may be the virus’s downfall.

Cells without surface protein markers are targeted by another of the body’s white blood cell armoury, Natural Killer cells - cellular assassins, which when activated, release specialised enzymes into target cells to kill them.

“Despite the body’s valiant efforts to ward off the virus, women are still contracting this awful disease, so there are clearly other mechanisms at work. We need to look at the role of the other components of the virus, to see if they prevent the Natural Killer cells from attacking,” says Professor Blair. “For example, we’ve started examining the contribution of the virus protein E6, which we believe works in partnership with E7. The recent introduction of a vaccine against HPV is an important development in the fight against cervical cancer. However, it may take many years for the vaccine to reduce the number of cases of this cancer and other approaches to eliminating tumour cells need to be discovered.”

This research was funded by Yorkshire Cancer Research, the charity’s Chief Executive, Elaine King commented: “Human Papillomavirus is extremely complex with many mechanisms affecting how it operates. However, through this research we have discovered how the E7 protein works, which is a huge step forward, and will hopefully help us to develop effective ways to combat Human Papillomavirus in the future.”

Jo Kelly | alfa
Further information:
http://www.leeds.ac.uk

Further reports about: HPV Protein cervical mechanism

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>