Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Stopping a receptor called 'nogo' boosts the synapses

Findings could help explain brain benefits of exercise

New findings about a protein called the nogo receptor are offering fresh ways to think about keeping the brain sharp.

Scientists have found that reducing the nogo receptor in the brain results in stronger brain signaling in mice, effectively boosting signal strength between the synapses, the connections between nerve cells in the brain. The ability to enhance such connections is central to the brain’s ability to rewire, a process that happens constantly as we learn and remember. The findings are in the March 12 issue of the Journal of Neuroscience.

The work ties together several research threads that touch upon the health benefits of exercise. While those benefits are broadly recognized, how the gains accrue at a molecular level has been largely unknown. The new research gives scientists a way to produce changes in the brain that mirror those brought about by exercise, by reducing the effect of the nogo receptor.

... more about:
»Giger »Neuron »ability »dendritic »nogo »receptor »spinal »sprout »stroke »synapses

The find comes as a surprise, because for much of the last decade, the nogo receptor has been a prime target of researchers trying to coax nerves in the spinal cord to grow again. They named the protein after its ability to stop neurons from growing. Its action in the brain has not been a hot topic of study.

The find by neuroscientists at the University of Rochester Medical Center casts the nogo receptor in a new light. Instead of serving as a target for efforts at regrowing spinal nerve fibers – indeed, the Rochester team showed last year that the molecule doesn’t control that process – the molecule suddenly has much broader implications for learning and memory.

“One of the central questions in neuroscience is – what is the molecular and cellular basis of learning?” said Roman Giger, Ph.D., associate professor in the Department of Biomedical Genetics, who led the study. “The nogo receptor seems to play a role.”

The receptor is a promiscuous molecule that hooks up with several other molecules which prevent the growth of neurons in the spinal cord. For most of this decade, scientists have worked to target the molecule, thinking that if they could block it, they could possibly regenerate nerves, repairing spinal cord damage in a way that is impossible today.

But that road has proved difficult. Last year in the same journal, the Rochester team led by Giger showed that while the nogo receptor does play a role in preventing spinal nerves from growing, it does not control the process outright. While nogo receptor activation can transiently stunt the growth of neurons, it is not required for chronic outgrowth inhibition of injured nerve cells.

Giger’s team has found that in some areas of the brain, such as the hippocampus, the nogo receptor is at least 10 times more prevalent than in the spinal cord.

In the brain, Giger’s team found that the nogo receptor wields broad influence over a process known as neuroplasticity, which describes how our brain cells change and adapt constantly to meet our needs. It can be thought of simply as the brain’s ability to rewire itself on the fly to meet the demands of an organism. The process explains why people are able to recover many of their abilities even after a traumatic brain injury or a stroke: Other brain cells pick up the work for the ones that have died.

Giger’s team found that the nogo receptor plays an important role in changing the brain in two ways.

First, the molecule plays a completely unexpected role manipulating the strength of signals between brain cells in the synapses. A team led by Peter Shrager, Ph.D., professor of Neurobiology and Anatomy, made sophisticated measurements of the strengths of the signals as they passed from cell to cell in mice. They found that mutant mice with fewer nogo receptors than normal had stronger brain signaling, what scientists call “long-term potentiation.

The molecule also affected tiny structures known as dendritic spines, crucial connections that are extensions of the neuron and help cells “talk” to other cells. Mice with lots of the nogo receptor had a different mix of dendritic spines than normal mice. In the hippocampus, the mutant mice had fewer mushroom-shaped dendritic spines and more stubby and thin spines than the other mice. Scientists don’t yet know the ramifications of the change, but they say it’s firm evidence that the nogo receptor has effects on the anatomic structure of the brain. Creation and removal of dendritic spines is an important form of brain rewiring.

The team attributes much of the effects of the nogo receptor to its ability to strongly bind to a growth factor known as FGF2 (fibroblast growth factor 2), which in the brain and other parts of the central nervous system nourishes neurons, allowing them to branch out and grow new sprouts. When the nogo receptor is present in abundance, it binds to FGF2 molecules, and as a result neurons no longer branch and sprout as they otherwise would.

Altogether, the findings show that the nogo receptor has a broad impact on processes in the brain that underlie learning and memory, said Giger.

“It’s known that changes in synaptic strength can lead to rewiring of the nervous system in such a way that we can compensate for mild to moderate injuries,” said Giger, who is a scientist in the Center for Neural Development and Disease. “Enhancing synaptic plasticity can partially counter the effects of an injury like stroke, or traumatic brain injury. Really, the process happens routinely in many stroke patients – it’s what makes rehabilitation after stroke possible.”

Much of the same type of rewiring also happens as a result of exercise. Scientists have shown that exercise improves the brain’s neuroplasticity, boosting the brain’s ability to sprout new structures and send crisp signals, which in turn helps people recover from injuries to the central nervous system. And recently, researchers at the Karolinska Institute in Stockholm showed that exercise reduces the abundance of the nogo receptor in the brain. Giger’s work provides a molecular framework that brings the disparate findings together.

The findings could also explain something that has puzzled scientists, said Giger. Mice with damaged spinal cords that have been treated with compounds designed to knock out the nogo receptor seem to improve a bit, even though scientists have never been able to demonstrate nerve regrowth in those mice. It may be that their improvement instead is coming through the signal-boosting effect in the synapses.

While it’s tempting to think that knocking down the nogo receptor is a simple process that would help people under all circumstances by boosting their brain power, Giger points out that the molecule is not only found at synapses but also along axons, where scientists believe it plays an important role limiting the sprouting of nerve fibers. Any effort to reduce the nogo receptor will have to be studied thoroughly to watch for other effects.

The work was funded by the National Institute of Neurological Disorders and Stroke, the New York State Spinal Cord Injury Research Program, and the Dr. Miriam and Sheldon G. Adelson Research Medical Foundation’s Adelson Program in Neural Repair and Rehabilitation.

While Giger headed the project, much of the research was done in equal part by the two first authors, Research Assistant Professor Hakjoo Lee, Ph.D., and graduate student Stephen Raiker.

Other authors include former graduate student Karthik Venkatesh, Ph.D., now at the University of Michigan; former Professor Hermes Yeh, Ph.D., now at Dartmouth; technician Rebecca Geary; graduate student Laurie Robak; and Yu Zhang, Ph.D., now a research assistant professor in the Department of Neurosurgery.

Tom Rickey | EurekAlert!
Further information:

Further reports about: Giger Neuron ability dendritic nogo receptor spinal sprout stroke synapses

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>