Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Surprising discovery from first large-scale analysis of biodiversity and biogeography of viruses

Modern microbialites may be endemic remnants of ancient ecosystems

Viruses and bacterial viruses (known as phages) are among the most abundant life forms on the planet. Two papers published recently in Nature, March 2 and 12, 2008, analyse the geographical distribution of viral communities in modern organosedimentary structures (sedimentary features, built by the interaction of organisms and their environment) known as microbialites, the living analogues of the oldest fossils on Earth, and come up with some surprising nuggets of information.

Microbialites first appeared in the geological record, 3.5 billion years ago, and for more than 2 billion years they are the main evidence of life on Earth. A team of scientists from US and Singapore used a comparative metagenomics approach to show that phages associated with such structures are very different not only from each other but also from those found in any other ecosystem so far. The team’s findings indicate that modern microbialites are endemic remnants of ancient ecosystems.

Dr Ruan Yijun, Senior Group Leader at the Genome Institute of Singapore (GIS), said, “Using DNA sequencing technology, we were able to identify unknown viruses in various environments relevant to human health. This collaboration is the first ever large-scale effort to analyse biodiversity and biogeography of viruses in the environments around humans.”

“We have been interested in this kind of analysis since the SARS (severe acute respiratory syndrome) outbreak in 2002,” added Dr Ruan. “In pursuit of this interest, we established a virus discovery programme at GIS, resulting in the discovery of abundant viruses in the human gut (PLoS Biology, 2006) and different variants of dengue viruses. Now, with more viral metagenomic data accumulated, we are able to summarise the biodiversity and biogeography on a global scale.”

Microbialites are organosedimentary structures accreted by sediment trapping, binding and in situ precipitation due to the growth and metabolic activities of microorganisms.

Stromatolites and thrombolites are morphological types of microbialites classified by their internal mesostructure: layered and clotted, respectively.

Cathy Yarbrough | EurekAlert!
Further information:

Further reports about: Biodiversity biogeography ecosystem microbialites

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>