Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Surprising discovery from first large-scale analysis of biodiversity and biogeography of viruses

Modern microbialites may be endemic remnants of ancient ecosystems

Viruses and bacterial viruses (known as phages) are among the most abundant life forms on the planet. Two papers published recently in Nature, March 2 and 12, 2008, analyse the geographical distribution of viral communities in modern organosedimentary structures (sedimentary features, built by the interaction of organisms and their environment) known as microbialites, the living analogues of the oldest fossils on Earth, and come up with some surprising nuggets of information.

Microbialites first appeared in the geological record, 3.5 billion years ago, and for more than 2 billion years they are the main evidence of life on Earth. A team of scientists from US and Singapore used a comparative metagenomics approach to show that phages associated with such structures are very different not only from each other but also from those found in any other ecosystem so far. The team’s findings indicate that modern microbialites are endemic remnants of ancient ecosystems.

Dr Ruan Yijun, Senior Group Leader at the Genome Institute of Singapore (GIS), said, “Using DNA sequencing technology, we were able to identify unknown viruses in various environments relevant to human health. This collaboration is the first ever large-scale effort to analyse biodiversity and biogeography of viruses in the environments around humans.”

“We have been interested in this kind of analysis since the SARS (severe acute respiratory syndrome) outbreak in 2002,” added Dr Ruan. “In pursuit of this interest, we established a virus discovery programme at GIS, resulting in the discovery of abundant viruses in the human gut (PLoS Biology, 2006) and different variants of dengue viruses. Now, with more viral metagenomic data accumulated, we are able to summarise the biodiversity and biogeography on a global scale.”

Microbialites are organosedimentary structures accreted by sediment trapping, binding and in situ precipitation due to the growth and metabolic activities of microorganisms.

Stromatolites and thrombolites are morphological types of microbialites classified by their internal mesostructure: layered and clotted, respectively.

Cathy Yarbrough | EurekAlert!
Further information:

Further reports about: Biodiversity biogeography ecosystem microbialites

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>