Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Systems biology approach identifies nutrient regulation of biological clock in plants

18.03.2008
Using a systems biological analysis of genome-scale data from the model plant Arabidopsis, an international team of researchers identified that the master gene controlling the biological clock is sensitive to nutrient status.

The study will appear in the latest issue of the Proceedings of the National Academy of Sciences. This hypothesis derived from multi-network analysis of Arabidopsis genomic data, and validated experimentally, has shed light on how nutrients affect the molecular networks controlling plant growth and development in response to nutrient sensing.

The study was conducted by a team of researchers at New York University’s Center for Genomics and Systems Biology, Chile’s Pontificia Universidad Católica de Chile, Dartmouth College, and Cold Spring Harbor Labs. The study’s lead authors are Rodrigo A. Gutiérrez of the Pontificia Universidad Católica de Chile and Gloria Coruzzi of NYU’s Center for Genomics and Systems Biology. They note that the systems biology approach to uncovering nutrient regulated gene networks provides new targets for engineering traits in plants of agronomic interest such as increased nitrogen use efficiency, which could lead to reduced fertilizer cost and lowering ground water contamination by nitrates.

Scientists have previously studied how nitrogen nutrients affect gene expression as a way to understand the mechanisms that control plant growth and development. Nitrogen is an essential nutrient and a metabolic signal that is sensed and converted, resulting in the control of gene expression in plants. In addition, nitrate has been shown to serve as a signal for the control of gene expression in Arabidopsis, the first flowering plant to have its entire genome sequenced. There is existing evidence, on a gene-by-gene basis, that products of nitrogen assimilation, the amino acids glutamate (Glu) or glutamine (Gln), might serve as signals of organic nitrogen status that are sensed and in turn regulate gene expression.

... more about:
»Arabidopsis »Expression »Organic »nitrogen »nutrient

To identify genome-wide responses to such organic nitrogen signals, the researchers treated Arabidopsis seedlings with inorganic nitrogen (N) in both the presence and the absence of chemicals that inhibit the assimilation into organic N and conducted a genome-wide analysis of all genes whose expression responds to inorganic or organic forms of nitrogen. Using an integrated network model of molecular interactions for Arabidopsis--constructed by the researchers--in which approximately 7,000 genes are connected by 230,000 molecular interactions, they uncovered a sub-network of genes regulated by organic nitrogen that includes a highly connected network “hub” CCA1, which controls a plant’s biological clock, and target genes involved in nitrogen assimilation.

The findings thus provide evidence that plant nutrition, like animal nutrition, is tightly linked to circadian, or biological clock, functions as scientists have previously hypothesized. Other researchers have recently found that the central clock gene Per2 is necessary for food anticipation in mice. This study indicates that nitrogen nutrition affects CCA1, the central clock gene of plants, suggesting nutritional regulation of the biological clock occurs in plants.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

Further reports about: Arabidopsis Expression Organic nitrogen nutrient

More articles from Life Sciences:

nachricht New type of photosynthesis discovered
17.06.2018 | Imperial College London

nachricht New ID pictures of conducting polymers discover a surprise ABBA fan
17.06.2018 | University of Warwick

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>