Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Systems biology approach identifies nutrient regulation of biological clock in plants

18.03.2008
Using a systems biological analysis of genome-scale data from the model plant Arabidopsis, an international team of researchers identified that the master gene controlling the biological clock is sensitive to nutrient status.

The study will appear in the latest issue of the Proceedings of the National Academy of Sciences. This hypothesis derived from multi-network analysis of Arabidopsis genomic data, and validated experimentally, has shed light on how nutrients affect the molecular networks controlling plant growth and development in response to nutrient sensing.

The study was conducted by a team of researchers at New York University’s Center for Genomics and Systems Biology, Chile’s Pontificia Universidad Católica de Chile, Dartmouth College, and Cold Spring Harbor Labs. The study’s lead authors are Rodrigo A. Gutiérrez of the Pontificia Universidad Católica de Chile and Gloria Coruzzi of NYU’s Center for Genomics and Systems Biology. They note that the systems biology approach to uncovering nutrient regulated gene networks provides new targets for engineering traits in plants of agronomic interest such as increased nitrogen use efficiency, which could lead to reduced fertilizer cost and lowering ground water contamination by nitrates.

Scientists have previously studied how nitrogen nutrients affect gene expression as a way to understand the mechanisms that control plant growth and development. Nitrogen is an essential nutrient and a metabolic signal that is sensed and converted, resulting in the control of gene expression in plants. In addition, nitrate has been shown to serve as a signal for the control of gene expression in Arabidopsis, the first flowering plant to have its entire genome sequenced. There is existing evidence, on a gene-by-gene basis, that products of nitrogen assimilation, the amino acids glutamate (Glu) or glutamine (Gln), might serve as signals of organic nitrogen status that are sensed and in turn regulate gene expression.

... more about:
»Arabidopsis »Expression »Organic »nitrogen »nutrient

To identify genome-wide responses to such organic nitrogen signals, the researchers treated Arabidopsis seedlings with inorganic nitrogen (N) in both the presence and the absence of chemicals that inhibit the assimilation into organic N and conducted a genome-wide analysis of all genes whose expression responds to inorganic or organic forms of nitrogen. Using an integrated network model of molecular interactions for Arabidopsis--constructed by the researchers--in which approximately 7,000 genes are connected by 230,000 molecular interactions, they uncovered a sub-network of genes regulated by organic nitrogen that includes a highly connected network “hub” CCA1, which controls a plant’s biological clock, and target genes involved in nitrogen assimilation.

The findings thus provide evidence that plant nutrition, like animal nutrition, is tightly linked to circadian, or biological clock, functions as scientists have previously hypothesized. Other researchers have recently found that the central clock gene Per2 is necessary for food anticipation in mice. This study indicates that nitrogen nutrition affects CCA1, the central clock gene of plants, suggesting nutritional regulation of the biological clock occurs in plants.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

Further reports about: Arabidopsis Expression Organic nitrogen nutrient

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>