Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Systems biology approach identifies nutrient regulation of biological clock in plants

Using a systems biological analysis of genome-scale data from the model plant Arabidopsis, an international team of researchers identified that the master gene controlling the biological clock is sensitive to nutrient status.

The study will appear in the latest issue of the Proceedings of the National Academy of Sciences. This hypothesis derived from multi-network analysis of Arabidopsis genomic data, and validated experimentally, has shed light on how nutrients affect the molecular networks controlling plant growth and development in response to nutrient sensing.

The study was conducted by a team of researchers at New York University’s Center for Genomics and Systems Biology, Chile’s Pontificia Universidad Católica de Chile, Dartmouth College, and Cold Spring Harbor Labs. The study’s lead authors are Rodrigo A. Gutiérrez of the Pontificia Universidad Católica de Chile and Gloria Coruzzi of NYU’s Center for Genomics and Systems Biology. They note that the systems biology approach to uncovering nutrient regulated gene networks provides new targets for engineering traits in plants of agronomic interest such as increased nitrogen use efficiency, which could lead to reduced fertilizer cost and lowering ground water contamination by nitrates.

Scientists have previously studied how nitrogen nutrients affect gene expression as a way to understand the mechanisms that control plant growth and development. Nitrogen is an essential nutrient and a metabolic signal that is sensed and converted, resulting in the control of gene expression in plants. In addition, nitrate has been shown to serve as a signal for the control of gene expression in Arabidopsis, the first flowering plant to have its entire genome sequenced. There is existing evidence, on a gene-by-gene basis, that products of nitrogen assimilation, the amino acids glutamate (Glu) or glutamine (Gln), might serve as signals of organic nitrogen status that are sensed and in turn regulate gene expression.

... more about:
»Arabidopsis »Expression »Organic »nitrogen »nutrient

To identify genome-wide responses to such organic nitrogen signals, the researchers treated Arabidopsis seedlings with inorganic nitrogen (N) in both the presence and the absence of chemicals that inhibit the assimilation into organic N and conducted a genome-wide analysis of all genes whose expression responds to inorganic or organic forms of nitrogen. Using an integrated network model of molecular interactions for Arabidopsis--constructed by the researchers--in which approximately 7,000 genes are connected by 230,000 molecular interactions, they uncovered a sub-network of genes regulated by organic nitrogen that includes a highly connected network “hub” CCA1, which controls a plant’s biological clock, and target genes involved in nitrogen assimilation.

The findings thus provide evidence that plant nutrition, like animal nutrition, is tightly linked to circadian, or biological clock, functions as scientists have previously hypothesized. Other researchers have recently found that the central clock gene Per2 is necessary for food anticipation in mice. This study indicates that nitrogen nutrition affects CCA1, the central clock gene of plants, suggesting nutritional regulation of the biological clock occurs in plants.

James Devitt | EurekAlert!
Further information:

Further reports about: Arabidopsis Expression Organic nitrogen nutrient

More articles from Life Sciences:

nachricht Microbe hunters discover long-sought-after iron-munching microbe
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Seeking balanced networks: how neurons adjust their proteins during homeostatic scaling.
24.10.2016 | Max-Planck-Institut für Hirnforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Seeking balanced networks: how neurons adjust their proteins during homeostatic scaling.

24.10.2016 | Life Sciences

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

More VideoLinks >>>