Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On the trail of rogue genetically modified pathogens

18.03.2008
Bacteria can be used to engineer genetic modifications, thereby providing scientists with a tool to combat many challenges in areas from food production to drug discovery.

However, this sophisticated technology can also be used maliciously, raising the threat of engineered pathogens. New research published in the online open access journal Genome Biology shows that computational tools could become a vital resource for detecting rogue genetically engineered bacteria in environmental samples.

Jonathan Allen, Shea Gardner and Tom Slezak of the Lawrence Livermore National Laboratory in California, US, designed new computational tools that identify a set of DNA markers that can distinguish between artificial vector sequences and natural DNA sequences. Natural plasmids and artificial vector sequences have much in common, but these new tools show the potential to achieve high sensitivity and specificity, even when detecting previously unsequenced vectors in microarray-based bioassays.

A new computational genomics tool was developed to compare all available sequenced artificial vectors with available natural sequences, including plasmids and chromosomes, from bacteria and viruses. The tool clusters the artificial vector sequences into different subgroups based on shared sequence; these shared sequences were then compared with the natural plasmid and chromosomal sequence information so as to find regions that are unique to the artificial vectors. Nearly all the artificial vector sequences had one or more unique regions. Short stretches of these unique regions are termed ‘candidate DNA signatures’ and can be used as probes for detecting an artificial vector sequence in the presence of natural sequences using a microarray. Further tests showed that subgroups of candidate DNA signatures are far more likely to match unseen artificial than natural sequences.

The authors say that the next step is to see whether a bioassay design using DNA signatures on microarrays can spot genetically modified DNA in a sample containing a mixture of natural and modified bacteria. The scientific community will need to cooperate with computational experts to sequence and track available vector sequences if DNA signatures are to be used successfully to support detection and deterrence against malicious genetic engineering applications. Scientists would be able to maintain an expanding database of DNA signatures to track all sequenced vectors.

“As with any attempt to counter malicious use of technology, detecting genetic engineering in microbes will be an immense challenge that requires many different tools and continual effort,” says Allen.

Charlotte Webber | alfa
Further information:
http://genomebiology.com/
http://www.biomedcentral.com

Further reports about: Computational DNA Plasmid artificial genetically vector

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>