Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On the trail of rogue genetically modified pathogens

18.03.2008
Bacteria can be used to engineer genetic modifications, thereby providing scientists with a tool to combat many challenges in areas from food production to drug discovery.

However, this sophisticated technology can also be used maliciously, raising the threat of engineered pathogens. New research published in the online open access journal Genome Biology shows that computational tools could become a vital resource for detecting rogue genetically engineered bacteria in environmental samples.

Jonathan Allen, Shea Gardner and Tom Slezak of the Lawrence Livermore National Laboratory in California, US, designed new computational tools that identify a set of DNA markers that can distinguish between artificial vector sequences and natural DNA sequences. Natural plasmids and artificial vector sequences have much in common, but these new tools show the potential to achieve high sensitivity and specificity, even when detecting previously unsequenced vectors in microarray-based bioassays.

A new computational genomics tool was developed to compare all available sequenced artificial vectors with available natural sequences, including plasmids and chromosomes, from bacteria and viruses. The tool clusters the artificial vector sequences into different subgroups based on shared sequence; these shared sequences were then compared with the natural plasmid and chromosomal sequence information so as to find regions that are unique to the artificial vectors. Nearly all the artificial vector sequences had one or more unique regions. Short stretches of these unique regions are termed ‘candidate DNA signatures’ and can be used as probes for detecting an artificial vector sequence in the presence of natural sequences using a microarray. Further tests showed that subgroups of candidate DNA signatures are far more likely to match unseen artificial than natural sequences.

The authors say that the next step is to see whether a bioassay design using DNA signatures on microarrays can spot genetically modified DNA in a sample containing a mixture of natural and modified bacteria. The scientific community will need to cooperate with computational experts to sequence and track available vector sequences if DNA signatures are to be used successfully to support detection and deterrence against malicious genetic engineering applications. Scientists would be able to maintain an expanding database of DNA signatures to track all sequenced vectors.

“As with any attempt to counter malicious use of technology, detecting genetic engineering in microbes will be an immense challenge that requires many different tools and continual effort,” says Allen.

Charlotte Webber | alfa
Further information:
http://genomebiology.com/
http://www.biomedcentral.com

Further reports about: Computational DNA Plasmid artificial genetically vector

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>