Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eco-Friendly Pyrotechnics

17.03.2008
Fireworks pollute—nitrogen-rich compounds now pave the way for ecological alternatives

You know it is chemistry when it stinks and goes boom—and entrances us. “No other application in the field of chemistry has such a positive association for the general population as fireworks,” says Thomas Klapötke (University of Munich, Germany). “However, pyrotechnical applications are significant polluters of the environment.”

In the journal Angewandte Chemie, Klapötke and his co-author Georg Steinhauser (TU Vienna, Austria) give an overview of how nitrogen-rich compounds and other new strategies could help to limit the danger to the environment.

In addition to fireworks, the field of pyrotechnics includes applications like airbags, signal flares, propellants and charges for civil and military purposes, and the production of nanoporous metal foams for catalysis, hydrogen storage, and insulation.

... more about:
»Agent »Klapötke »compounds »propellant »pyrotechnic

Pyrotechnical materials contain an oxidizer and a reducing agent; depending on the application, binding material, propellant charges, coloring agents and smoke- and sound-producing agents can be added. When a firework or other pyrotechnic is set off, it releases a whole cocktail of poisons damaging to humans and the environment: heavy metals like lead, barium and chromium, chlorates, dioxins, smoke and particulates, carbon monoxide, and nitrogen and sulfur oxides. “For a long time, the consequences of this were not considered,” says Klapötke, “in the mean time scientists have been working on more environmentally friendly alternatives.” As usual, the main stumbling block is price pressure because the new products must compete with the established ones. Klapötke says, “Lawmakers and other promoters must intercede to address this.”

“Modern developments in pyrotechnics are aimed at the use of nitrogen-rich compounds,” according to Klapötke. In contrast to conventional energetic substances, these do not draw their energy from the oxidation of the carbon backbone, but from their high heats of formation, which are released upon their decomposition. Interesting candidates include derivatives of tetrazoles, five-membered rings made of four nitrogen and one carbon atom, as well as tetrazines, six-membered rings made of four nitrogen and two carbon atoms. Aminotetrazole salts with the nontoxic metals lithium, sodium, potassium, rubidium and cesium result in red, orange, violet, purple, and pink colored flames. The trouble is with the color green. Intensive research is being carried out in search of barium-free green-burning salts based on copper compounds.

The class of nitrogen-rich pyrotechnics does not offer only environmentally friendly combustion products; they often offer better color quality and intensity than conventional mixtures. Nitrogen-rich propellants demonstrate improved performance and burn smoke free.

Author: Thomas M. Klapötke, Ludwig-Maximilians-Universität München (Germany), http://www.chemie.uni-muenchen.de/ac/klapoetke/?menu=adress

Title: “Green” Pyrotechnics: A Chemists´ Challenge

Angewandte Chemie International Edition, doi: 10.1002/anie.200704510

Thomas M. Klapötke | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.chemie.uni-muenchen.de/ac/klapoetke/?menu=adress

Further reports about: Agent Klapötke compounds propellant pyrotechnic

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>