Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fungi can tell us about the origin of sex chromosomes

17.03.2008
Fungi do not have sexes, just so-called mating types. A new study being published today in the prestigious journal PLoS shows that there are great similarities between the parts of DNA that determine the sex of plants and animals and the parts of DNA that determine mating types in certain fungi. This makes fungi interesting as new model organisms in studies of the evolutionary development of sex chromosomes.

In the plant and animal kingdoms there are individuals of different sexes, that is, bearers of either many tiny sex cells (males) or a few large ones (females). In the third eukaryote kingdom (organisms with DNA gathered in the cell nucleus), the fungi kingdom, there are no sexes but rather a simpler and more primitive system of different so-called mating types. These are distinguished by different variants of a few specific genes.

There are many ways to determine sex. In humans it is done by sex chromosomes. It is thought that this sex difference arose in the plant and animal kingdom from the simpler system of mating types and that this happened several times independently of each other throughout evolution. The change is believed to have happened with the inhibition of a step in the copying process in DNA, which led to two separate chromosomes. These then developed further over a long period of time.

“In humans, sex chromosomes are believed to have developed over the last 300 million years from a common ‘proto-sex chromosome,’” says Hanna Johannesson, who directed the study.

... more about:
»Chromosome »DNA »fungi »mating »parts

The new study shows for the first time that even though fungi do not have sexes, there are many similarities between the parts of the genome that determine sex in plants and animals and the parts of the genome that control mating types in certain fungi. The research group specifically studied a spore sac fungus (Neurospora tetrasperma) and can show that the similarities are great, regarding both present-day structure and the way in which it arose.

“It’s hard to study the evolution of sex chromosomes, partly because so many different and important sex-specific characters are tied to them. But much of this can be avoided if we use simpler systems, like fungi, as models.”

Anneli Waara | alfa
Further information:
http://www.uu.se
http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1000030

Further reports about: Chromosome DNA fungi mating parts

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>