Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers indicate the cause of death of the Oimyakon baby mammoth

17.03.2008
On September 27, 2004, the front part of a baby mammoth’s body was found in Olchan mine in the Oimyakon Region of Yakutia. Specialists of the Museum of Mammoth of the Institute of Applied Ecology of the North, Academy of Sciences of Sakha Republic (Yakutia), have been thoroughly studying the finding and they have published the first outcomes.

There remained only the head, part of the proboscis, the neck area and part of the breast of the baby mammoth’s body. The body is practically cut off behind the withers and shoulder area. The skin on the head is torn on the forehead and cinciput, the skull is damaged, the proboscis is torn off.

The baby mammoth’s skin is well preserved, it is smooth, greyish-brown, the tawny hair fell out and froze into the ice near the body. Under the skin, there remained muscles and the alveole with a permanent 76 millimeter long tusk, which had come through. Since the replacement of milk-tusks by permanent ones happened with mammoths at the age of one year the earliest, the researchers decided that the baby they had found perished approximately at this age. As the tusk is short, it can be assumed that the Oimyakon mammoth was a female (male’s tusks are longer).

The animal’s remains were investigated by the X-ray computer-aided tomography methods at the National Centre of Medicine in Yakutsk. Roentgenograms allowed to determine the baby’s age more accurately: judging by the teeth state, the mammoth was at least one year old but no more than a year and a half. The baby mammoth was already able to feed on vegetation independently. There are adipose deposits along the neck and practically from the skull foundation through to the withers area, the adipose deposits are up to seven centimetres thick. These deposits form real adipose “pockets” and they get over to the body sides.

... more about:
»Adipose »Oimyakon »deposits »skin »withers

The Stone Age artists often used to draw mammoths with a big hump on the back. Some specialists assume that mammoths laid adipose tissue on the withers like zebu or camels do, others believe that the hump on the back could be the consequence of vigorous muscles development, the third group thinks that mammoths’ “gibbosity” in the drawings of ancient human beings reflects the large mane development. In the Yakutsk researchers’ opinion, the adipose tissue discovered by them on the baby mammoth’s withers is the evidence that mammoths used to accumulate significant adipose deposits particularly in this part of the body. Such deposits helped them to survive the most severe conditions and water shortage during snowless winters.

Judging by radiocarbon dating performed at the University of Groningen (Netherlands), the little mammoth perished during the Kargin interglacial period, 413000±900 years ago. The sediments that contained the mammoth’s dead body preserved pollen, which mainly belonged to herbaceous and shrubby plants. The little mammoth lived among sedge and motley grass swamps. Now, these places are covered by larch woodland with a touch of alder-trees.

Specialists have checked the Oimyakon mammoth for presence of particularly dangerous infections, but found nothing. The baby did not die from an infectious disease. Apparently, it got stuck and drowned in a waterlogged place. Complete hair shedding and skin exfoliation on some parts of the body testify to the fact that the mammoth’s body stayed in water for a long time. Most probably, the little mammoth drowned in autumn, because its body froze into the ice soon and then it was covered by mudslide, thanks to which the body remained in the frozen state.

At present, the baby mammoth is still frozen. The researchers are sure that integrated study of this object will provide the scientific community with a lot of new data about the height, development, molecular and genetic peculiarities of the mammoths, as well as multiple data on paleo-ecology of the late pleistocene.

Olga Myznikova | alfa
Further information:
http://www.informnauka.ru

Further reports about: Adipose Oimyakon deposits skin withers

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>