Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers indicate the cause of death of the Oimyakon baby mammoth

17.03.2008
On September 27, 2004, the front part of a baby mammoth’s body was found in Olchan mine in the Oimyakon Region of Yakutia. Specialists of the Museum of Mammoth of the Institute of Applied Ecology of the North, Academy of Sciences of Sakha Republic (Yakutia), have been thoroughly studying the finding and they have published the first outcomes.

There remained only the head, part of the proboscis, the neck area and part of the breast of the baby mammoth’s body. The body is practically cut off behind the withers and shoulder area. The skin on the head is torn on the forehead and cinciput, the skull is damaged, the proboscis is torn off.

The baby mammoth’s skin is well preserved, it is smooth, greyish-brown, the tawny hair fell out and froze into the ice near the body. Under the skin, there remained muscles and the alveole with a permanent 76 millimeter long tusk, which had come through. Since the replacement of milk-tusks by permanent ones happened with mammoths at the age of one year the earliest, the researchers decided that the baby they had found perished approximately at this age. As the tusk is short, it can be assumed that the Oimyakon mammoth was a female (male’s tusks are longer).

The animal’s remains were investigated by the X-ray computer-aided tomography methods at the National Centre of Medicine in Yakutsk. Roentgenograms allowed to determine the baby’s age more accurately: judging by the teeth state, the mammoth was at least one year old but no more than a year and a half. The baby mammoth was already able to feed on vegetation independently. There are adipose deposits along the neck and practically from the skull foundation through to the withers area, the adipose deposits are up to seven centimetres thick. These deposits form real adipose “pockets” and they get over to the body sides.

... more about:
»Adipose »Oimyakon »deposits »skin »withers

The Stone Age artists often used to draw mammoths with a big hump on the back. Some specialists assume that mammoths laid adipose tissue on the withers like zebu or camels do, others believe that the hump on the back could be the consequence of vigorous muscles development, the third group thinks that mammoths’ “gibbosity” in the drawings of ancient human beings reflects the large mane development. In the Yakutsk researchers’ opinion, the adipose tissue discovered by them on the baby mammoth’s withers is the evidence that mammoths used to accumulate significant adipose deposits particularly in this part of the body. Such deposits helped them to survive the most severe conditions and water shortage during snowless winters.

Judging by radiocarbon dating performed at the University of Groningen (Netherlands), the little mammoth perished during the Kargin interglacial period, 413000±900 years ago. The sediments that contained the mammoth’s dead body preserved pollen, which mainly belonged to herbaceous and shrubby plants. The little mammoth lived among sedge and motley grass swamps. Now, these places are covered by larch woodland with a touch of alder-trees.

Specialists have checked the Oimyakon mammoth for presence of particularly dangerous infections, but found nothing. The baby did not die from an infectious disease. Apparently, it got stuck and drowned in a waterlogged place. Complete hair shedding and skin exfoliation on some parts of the body testify to the fact that the mammoth’s body stayed in water for a long time. Most probably, the little mammoth drowned in autumn, because its body froze into the ice soon and then it was covered by mudslide, thanks to which the body remained in the frozen state.

At present, the baby mammoth is still frozen. The researchers are sure that integrated study of this object will provide the scientific community with a lot of new data about the height, development, molecular and genetic peculiarities of the mammoths, as well as multiple data on paleo-ecology of the late pleistocene.

Olga Myznikova | alfa
Further information:
http://www.informnauka.ru

Further reports about: Adipose Oimyakon deposits skin withers

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>