Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fullerenes: produce and divide

17.03.2008
The unique complex designed and built from several units by specialists of the Closed Joint-Stock Company “Innovations of the Leningrad Institutes and Enterprises” (St. Petersburg) enables to produce kilograms of fullerenes per day – amazing hollow “globules”, “ellipsoids of rotation” – molecules consisting of several dozens of carbon atoms each.

And most importantly, the complex allows, if necessary, to divide them by the molecular mass, i.e., to single out the most investigated and often used fullerenes, molecules of which consist of 60 and 70 carbon atoms, as well as a fraction consisting of a mixture of heavier fullerene modifications – containing 76, 78, 84, 90 and more atoms of carbon.

It should be noted that relatively not long ago, fullerenes were rather exotic objects, which were actively studied but which were not practically used. But, as the scientists often put it, fullerenes are too perfect to be useless. Indeed, it has turned out that fullerenes per se and materials based on them or even the materials that contain a relatively small quantity of fullerenes or their derivatives in their composition possess various interesting and sometimes exceptionally useful properties. Fullerenes can act as catalysts and cocatalysts in a wide class of organic synthesis reactions, they are able to increase durability and elasticity of materials, fullerenes help to change optical properties of materials – their thermal and electroconductivity.

However, industrial processes require large-scale quantities of these surprising compounds, but the most well-known methods for obtaining fullerenes allow to produce very little of them, and in the mixture with other carbon retrofits – in the so-called fullerene soot along with graphite, amorphous carbon, carbonic nanotubes and other structures. Besides, properties of different fullerenes vary, consequently, to control the final material properties, it is necessary to use only fullerenes of a certain kind. It means that specialists should know how to divede them, this being also done in large-scale quantities, not in laboratory amounts.

... more about:
»Carbon »Complex »extractor »produce »properties »quantities »soot

The complex designed by the authors from St. Petersburg enables to produce fullerenes in significant quantities and to single out their target types, which are practically not contaminated by other carbonic products. The complex contains several basic units. The first unit is a 25-liter reactor per se for obtaining the primary product of fullerene mixture of particularly pure graphite rods – up to 120 grams per hour. This is the so-called fullerene soot, but fullerenes already make 12% to 14% of the mass. For the time being, it is still a mixture, but it mainly consists of the ?-60 fullerenes (65% to 70%), 23% to 27% - are the ?-70 fullerenes, and the rest is the mixture of heavier fullerenes.

The next unit is an extractor. Its task is to isolate the fullerene mixture from soot, the extractor productivity being about 400 grams of fullerene per one five-hour cycle (the extractor useful capacity is 1.8 l). The authors have designed an exclusively productive extractor – it enables to isolate practically all fullerenes from soot (more than 98%).

And finally, the closing unit of the complex is the separator system for obtaining individual fullerenes, first of all, the most demanded and the lightest type of fullerenes – ?-60. With the capacity of 10 l, it enables to produce 100 grams of fullerene per day, the product purity being rather high – 99.5% to 99.9%. Besides, there are special separators for isolation of heavier fractions, if needed. Thus, the complex allows to get absolutely exotic kinds of fullerenes, such as ?-84 and ?-90, they are also very pure but are obtained in lower quantities – however, the demand for them is significantly lower. As for the ?-70 fullerene, the complex manages to produce up to 20 grams of it per cycle, the cycle making two days in this case.

Certainly, this is only a list of main stages of the process developed by the researchers and, accordingly, only main types of required equipment. However, the authors did not only develop, patent and design the entire complex and all fundamental processes, but they even built real, production prototypes, not laboratory samples. The complex is operating, so as much fullerene as needed can be produced now. So far, kilograms of fullerenes are required, but most probably more will be needed in near future.

Olga Myznikova | alfa
Further information:
http://www.informnauka.ru

Further reports about: Carbon Complex extractor produce properties quantities soot

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>