Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fullerenes: produce and divide

17.03.2008
The unique complex designed and built from several units by specialists of the Closed Joint-Stock Company “Innovations of the Leningrad Institutes and Enterprises” (St. Petersburg) enables to produce kilograms of fullerenes per day – amazing hollow “globules”, “ellipsoids of rotation” – molecules consisting of several dozens of carbon atoms each.

And most importantly, the complex allows, if necessary, to divide them by the molecular mass, i.e., to single out the most investigated and often used fullerenes, molecules of which consist of 60 and 70 carbon atoms, as well as a fraction consisting of a mixture of heavier fullerene modifications – containing 76, 78, 84, 90 and more atoms of carbon.

It should be noted that relatively not long ago, fullerenes were rather exotic objects, which were actively studied but which were not practically used. But, as the scientists often put it, fullerenes are too perfect to be useless. Indeed, it has turned out that fullerenes per se and materials based on them or even the materials that contain a relatively small quantity of fullerenes or their derivatives in their composition possess various interesting and sometimes exceptionally useful properties. Fullerenes can act as catalysts and cocatalysts in a wide class of organic synthesis reactions, they are able to increase durability and elasticity of materials, fullerenes help to change optical properties of materials – their thermal and electroconductivity.

However, industrial processes require large-scale quantities of these surprising compounds, but the most well-known methods for obtaining fullerenes allow to produce very little of them, and in the mixture with other carbon retrofits – in the so-called fullerene soot along with graphite, amorphous carbon, carbonic nanotubes and other structures. Besides, properties of different fullerenes vary, consequently, to control the final material properties, it is necessary to use only fullerenes of a certain kind. It means that specialists should know how to divede them, this being also done in large-scale quantities, not in laboratory amounts.

... more about:
»Carbon »Complex »extractor »produce »properties »quantities »soot

The complex designed by the authors from St. Petersburg enables to produce fullerenes in significant quantities and to single out their target types, which are practically not contaminated by other carbonic products. The complex contains several basic units. The first unit is a 25-liter reactor per se for obtaining the primary product of fullerene mixture of particularly pure graphite rods – up to 120 grams per hour. This is the so-called fullerene soot, but fullerenes already make 12% to 14% of the mass. For the time being, it is still a mixture, but it mainly consists of the ?-60 fullerenes (65% to 70%), 23% to 27% - are the ?-70 fullerenes, and the rest is the mixture of heavier fullerenes.

The next unit is an extractor. Its task is to isolate the fullerene mixture from soot, the extractor productivity being about 400 grams of fullerene per one five-hour cycle (the extractor useful capacity is 1.8 l). The authors have designed an exclusively productive extractor – it enables to isolate practically all fullerenes from soot (more than 98%).

And finally, the closing unit of the complex is the separator system for obtaining individual fullerenes, first of all, the most demanded and the lightest type of fullerenes – ?-60. With the capacity of 10 l, it enables to produce 100 grams of fullerene per day, the product purity being rather high – 99.5% to 99.9%. Besides, there are special separators for isolation of heavier fractions, if needed. Thus, the complex allows to get absolutely exotic kinds of fullerenes, such as ?-84 and ?-90, they are also very pure but are obtained in lower quantities – however, the demand for them is significantly lower. As for the ?-70 fullerene, the complex manages to produce up to 20 grams of it per cycle, the cycle making two days in this case.

Certainly, this is only a list of main stages of the process developed by the researchers and, accordingly, only main types of required equipment. However, the authors did not only develop, patent and design the entire complex and all fundamental processes, but they even built real, production prototypes, not laboratory samples. The complex is operating, so as much fullerene as needed can be produced now. So far, kilograms of fullerenes are required, but most probably more will be needed in near future.

Olga Myznikova | alfa
Further information:
http://www.informnauka.ru

Further reports about: Carbon Complex extractor produce properties quantities soot

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>