Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MDC Researchers Reconstruct Jumping Gene - New Tool for Elucidating the Function of Genes

17.03.2008
They can be found in plants, animals and even in humans – inactive remains of jumping genes, transposons. Researchers are striving to develop active transposons from these remains, using them as tools to decode gene function.

At the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, Germany, researchers have now succeeded in reconstructing the first active transposon of the Harbinger transposon superfamily.

In the laboratory, the artificial transposon developed by Dr. Ludivine Sinzelle, Dr. Zsuzsanna Izsvák, and Dr. Zoltán Ivics also shows cut-and-paste transposition in human cells and promises to serve as a useful experimental system for investigating human gene function. The findings of the MDC researchers have just been published online in the Proceedings of the National Academy of Sciences (PNAS 10.1073/pnas.0707746105)*.

Transposons comprise about half of the human genome. “They are molecular parasites, similar to fleas, only that they are in the genome of the host and not on its back,” Dr. Zoltán Ivics explained. They jump, move, and proliferate through the host, without whom they could not survive. In most cases, transposons do not fulfill any function in the human genome. “However, not all are superfluous,” Dr. Ivics went on to say. “More than 100 active genes, including some associated with the immune system, have been recognized as probably derived from transposons.”

... more about:
»Active »Genome »Ivics »Transposon »function

To reconstruct an active transposon, Dr. Ivics’ team compared the DNA of various inactive Harbinger transposons, one of the largest superfamilies of transposons. Based on these results, they developed an artificial jumping gene. “We were very lucky,” Dr. Ivics said. “The very first experiment was successful.”

New tool for basic research
In the cell lab, the MDC researchers inserted the transposon into the human cell by means of a gene shuttle. Via a cut-and-paste mechanism, the artificial transposon excises itself from its transport vehicle and inserts itself into the genome of the cell. If the transposon jumps into an important gene and deactivates it, it may impair important processes in the cell. As a result, researchers can draw conclusions about the function of the gene.

Moreover, in the course of evolution, transposons have been responsible for the emergence of new genes. Thus, through computerized gene analysis, Dr. Ivics’ research team has discovered two new elements related to the Harbinger transposon. In a new project, Dr. Ivics aims to elucidate just what role these play in the human body.

Over the long term, scientists hope to use such transposons in gene therapy as well. With the aid of a transposon, an intact copy of a gene could be incorporated into the genome of a patient to repair a defective gene. “But until this can happen, there is still a lot to be done,” Dr. Ivics pointed out. “The new gene should not just jump in anywhere.”

Barbara Bachtler | alfa
Further information:
http://www.pnas.org/
http://www.mdc-berlin.de

Further reports about: Active Genome Ivics Transposon function

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>