Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Identify New Leads for Treating Parasitic Worm Disease

17.03.2008
Compounds May Provide Much-Needed New Weapons In Worldwide Battle Against Schistosomiasis
A research team supported by the National Institutes of Health (NIH) Roadmap and the National Institute of Allergy and Infectious Diseases (NIAID) has identified chemical compounds that hold promise as potential therapies for schistosomiasis, a parasitic disease that afflicts more than 200 million people worldwide. The findings were reported today in the advance online publication of the journal Nature Medicine.

In their paper, researchers from Illinois State University (ISU) in Normal, Ill., and NIH’s Chemical Genomics Center (NCGC) report that chemical compounds known as oxadiazoles can inhibit an enzyme vital to survival of Schistosoma, a group of parasitic flatworms that cause schistosomiasis. The NCGC, established in 2004 by the NIH Roadmap for Medical Research, includes a set of strategic initiatives drawing collectively from the agency-wide research resources of NIH.

“New therapeutic agents are sorely needed if we hope to ease the burden of schistosomiasis on the world’s health,” said NIH Director Elias A. Zerhouni, M.D. “These findings exemplify what academic researchers can accomplish with access to translational infrastructure and technologies that have previously been beyond their reach.”

Schistosomiasis, also known as bilharzia or snail fever, affects an estimated 207 million people, most of whom live in developing nations in tropical areas. About 20 million of those people are seriously disabled due to severe anemia, diarrhea, internal bleeding and/or organ damage. In addition, another 280,000 die of the disease each year.

People become infected with Schistosoma when they wade, swim or bathe in fresh water inhabited by snails, which serve as the worms’ intermediate hosts. The microscopic worms enter the human body by boring through the skin and migrate into the blood vessels that supply the intestinal and urinary systems. After the worms mature and reproduce, their eggs are eliminated in human urine and feces. If human waste contaminated by worm eggs finds its way into fresh water, the cycle begins again.

Currently, people living in more than 70 tropical nations require annual or semi-annual drug treatment to rid their bodies of the parasite. Since the 1980s, praziquantel has effectively been the sole drug used for this purpose. Public health experts are concerned that the Schistosoma parasites will become resistant to praziquantel and the drug will lose its effectiveness, as has been the case for agents used to combat many other infectious diseases such as malaria and tuberculosis.

“The search for new drugs for schistosomiasis is imperative if we are to control this devastating disease that exacts an enormous toll, both in terms of human suffering and economic development,” said NIAID Director Anthony S. Fauci, M.D.

The new research, which was conducted with Schistosoma maintained in laboratory conditions, shows that an oxadiazole compound was effective in inhibiting a crucial worm enzyme, called thioredoxin glutathione reductase (TGR). Furthermore, in tests of laboratory mice infected with Schistosoma, this compoundkilled the parasite in all of its stages, from larva to adult. The results exceeded all benchmarks set by the World Health Organization for potential new compounds to treat schistosomiasis. Importantly, the researchers also showed that the compound was active against all three major species of Schistosoma worms that infect humans.

“This builds upon my lab’s previous findings that Schistosoma worms survive in the host due to a protective enzyme TGR. By teaming with NCGC, we were able to move our research one step closer to the clinic by identifying a class of compounds that specifically target that enzyme,” said the study’s lead researcher, David L. Williams, Ph.D., a professor of biology at ISUand NIAID grantee. “Still, much remains to be done. Our ultimate goal is to see our basic biological findings translated into help for people with schistosomiasis.”

The TGR project submitted to NCGC by Dr. Williams’ group was the first one officially accepted for screening by the NIH Roadmap Molecular Libraries Initiative. The results of that collaboration underscore the value of a new paradigm established by the NCGC, which is administered by the National Human Genome Research Institute (NHGRI). The high-tech center offers academic researchers, such as the ISU team, the opportunity to tap into a robotic system for quickly screening large numbers of chemical compounds for biological activity.

“Chemical genomic advances are being used to develop a new approach to a parasite that has afflicted countless generations of humankind,” said NHGRI Director Francis S. Collins, M.D., Ph.D. “This study showcases the beauty of high-throughput chemical screening for biomedical applications.”

NCGC Director Christopher P. Austin, M.D., who is a co-author of the Nature Medicine paper, said “Our center has brought pharmaceutical-scale chemical screening, informatics and medicinal chemistry to bear on neglected diseases that affect millions globally, but are not worked on by the pharmaceutical industry since they cannot generate the needed financial returns. This study demonstrates the wonderful things that can happen when the NCGC’s scientific capabilities and infrastructure are combined with the biological expertise of individual academic investigators.”

For more information on schistosomiasis, go to: http://www.cdc.gov/ncidod/dpd/parasites/schistosomiasis/default.htm

A diagram depicting the life cycle of the Schistosoma parasite can be found at: http://www.genome.gov/pressDisplay.cfm?photoID=20042. Micrographs of Schistosoma parasites can be found at: http://www.genome.gov/pressDisplay.cfm?photoID=20041, http://www.genome.gov/pressDisplay.cfm?photoID=20043, and http://www.genome.gov/pressDisplay.cfm?photoID=20044.

Full-resolution video clips of NCGC’s chemical screening facility in action are available at http://genome.gov/pressDisplay.cfm?photoID=20030.


NHGRI is one of the 27 institutes and centers at the NIH, an agency of the Department of Health and Human Services. The NHGRI Division of Intramural Research develops and implements technology to understand, diagnose and treat genomic and genetic diseases. Additional information about NHGRI can be found at its Web site, www.genome.gov.

NIAID is a component of the NIH. NIAID supports basic and applied research to prevent, diagnose and treat infectious diseases such as HIV/AIDS and other sexually transmitted infections, influenza, tuberculosis, malaria and illness from potential agents of bioterrorism. NIAID also supports research on basic immunology, transplantation and immune-related disorders, including autoimmune diseases, asthma and allergies.

NCGC is an ultra-high-throughput screening center that generates chemical probes of gene and cell functions in health and disease, and catalyzes drug development for neglected rare and orphan diseases. It is part of the NIH Roadmap for Medical Research. The Roadmap is a series of initiatives designed to pursue major opportunities and gaps in biomedical research that no single NIH institute could tackle alone, but which the agency as a whole can address to make the biggest impact possible on the progress of medical research.

The National Institutes of Health - "The Nation’s Medical Research Agency" - includes 27 institutes and centers, and is a component of the U.S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments and cures for both common and rare diseases.

Ray MacDougall | NIH
Further information:
http://www.nih.gov
http://www.nihroadmap.nih.gov
http://www.niaid.nih.gov

Further reports about: BASIC Genome NCGC NHGRI NIAID Schistosoma cfm compound enzyme gov/pressDisplay parasite schistosomiasis

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>