Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists Identify New Leads for Treating Parasitic Worm Disease

Compounds May Provide Much-Needed New Weapons In Worldwide Battle Against Schistosomiasis
A research team supported by the National Institutes of Health (NIH) Roadmap and the National Institute of Allergy and Infectious Diseases (NIAID) has identified chemical compounds that hold promise as potential therapies for schistosomiasis, a parasitic disease that afflicts more than 200 million people worldwide. The findings were reported today in the advance online publication of the journal Nature Medicine.

In their paper, researchers from Illinois State University (ISU) in Normal, Ill., and NIH’s Chemical Genomics Center (NCGC) report that chemical compounds known as oxadiazoles can inhibit an enzyme vital to survival of Schistosoma, a group of parasitic flatworms that cause schistosomiasis. The NCGC, established in 2004 by the NIH Roadmap for Medical Research, includes a set of strategic initiatives drawing collectively from the agency-wide research resources of NIH.

“New therapeutic agents are sorely needed if we hope to ease the burden of schistosomiasis on the world’s health,” said NIH Director Elias A. Zerhouni, M.D. “These findings exemplify what academic researchers can accomplish with access to translational infrastructure and technologies that have previously been beyond their reach.”

Schistosomiasis, also known as bilharzia or snail fever, affects an estimated 207 million people, most of whom live in developing nations in tropical areas. About 20 million of those people are seriously disabled due to severe anemia, diarrhea, internal bleeding and/or organ damage. In addition, another 280,000 die of the disease each year.

People become infected with Schistosoma when they wade, swim or bathe in fresh water inhabited by snails, which serve as the worms’ intermediate hosts. The microscopic worms enter the human body by boring through the skin and migrate into the blood vessels that supply the intestinal and urinary systems. After the worms mature and reproduce, their eggs are eliminated in human urine and feces. If human waste contaminated by worm eggs finds its way into fresh water, the cycle begins again.

Currently, people living in more than 70 tropical nations require annual or semi-annual drug treatment to rid their bodies of the parasite. Since the 1980s, praziquantel has effectively been the sole drug used for this purpose. Public health experts are concerned that the Schistosoma parasites will become resistant to praziquantel and the drug will lose its effectiveness, as has been the case for agents used to combat many other infectious diseases such as malaria and tuberculosis.

“The search for new drugs for schistosomiasis is imperative if we are to control this devastating disease that exacts an enormous toll, both in terms of human suffering and economic development,” said NIAID Director Anthony S. Fauci, M.D.

The new research, which was conducted with Schistosoma maintained in laboratory conditions, shows that an oxadiazole compound was effective in inhibiting a crucial worm enzyme, called thioredoxin glutathione reductase (TGR). Furthermore, in tests of laboratory mice infected with Schistosoma, this compoundkilled the parasite in all of its stages, from larva to adult. The results exceeded all benchmarks set by the World Health Organization for potential new compounds to treat schistosomiasis. Importantly, the researchers also showed that the compound was active against all three major species of Schistosoma worms that infect humans.

“This builds upon my lab’s previous findings that Schistosoma worms survive in the host due to a protective enzyme TGR. By teaming with NCGC, we were able to move our research one step closer to the clinic by identifying a class of compounds that specifically target that enzyme,” said the study’s lead researcher, David L. Williams, Ph.D., a professor of biology at ISUand NIAID grantee. “Still, much remains to be done. Our ultimate goal is to see our basic biological findings translated into help for people with schistosomiasis.”

The TGR project submitted to NCGC by Dr. Williams’ group was the first one officially accepted for screening by the NIH Roadmap Molecular Libraries Initiative. The results of that collaboration underscore the value of a new paradigm established by the NCGC, which is administered by the National Human Genome Research Institute (NHGRI). The high-tech center offers academic researchers, such as the ISU team, the opportunity to tap into a robotic system for quickly screening large numbers of chemical compounds for biological activity.

“Chemical genomic advances are being used to develop a new approach to a parasite that has afflicted countless generations of humankind,” said NHGRI Director Francis S. Collins, M.D., Ph.D. “This study showcases the beauty of high-throughput chemical screening for biomedical applications.”

NCGC Director Christopher P. Austin, M.D., who is a co-author of the Nature Medicine paper, said “Our center has brought pharmaceutical-scale chemical screening, informatics and medicinal chemistry to bear on neglected diseases that affect millions globally, but are not worked on by the pharmaceutical industry since they cannot generate the needed financial returns. This study demonstrates the wonderful things that can happen when the NCGC’s scientific capabilities and infrastructure are combined with the biological expertise of individual academic investigators.”

For more information on schistosomiasis, go to:

A diagram depicting the life cycle of the Schistosoma parasite can be found at: Micrographs of Schistosoma parasites can be found at:,, and

Full-resolution video clips of NCGC’s chemical screening facility in action are available at

NHGRI is one of the 27 institutes and centers at the NIH, an agency of the Department of Health and Human Services. The NHGRI Division of Intramural Research develops and implements technology to understand, diagnose and treat genomic and genetic diseases. Additional information about NHGRI can be found at its Web site,

NIAID is a component of the NIH. NIAID supports basic and applied research to prevent, diagnose and treat infectious diseases such as HIV/AIDS and other sexually transmitted infections, influenza, tuberculosis, malaria and illness from potential agents of bioterrorism. NIAID also supports research on basic immunology, transplantation and immune-related disorders, including autoimmune diseases, asthma and allergies.

NCGC is an ultra-high-throughput screening center that generates chemical probes of gene and cell functions in health and disease, and catalyzes drug development for neglected rare and orphan diseases. It is part of the NIH Roadmap for Medical Research. The Roadmap is a series of initiatives designed to pursue major opportunities and gaps in biomedical research that no single NIH institute could tackle alone, but which the agency as a whole can address to make the biggest impact possible on the progress of medical research.

The National Institutes of Health - "The Nation’s Medical Research Agency" - includes 27 institutes and centers, and is a component of the U.S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments and cures for both common and rare diseases.

Ray MacDougall | NIH
Further information:

Further reports about: BASIC Genome NCGC NHGRI NIAID Schistosoma cfm compound enzyme gov/pressDisplay parasite schistosomiasis

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>