Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein deficiency leads to faster fat burning in mice

14.03.2008
Researchers have developed a new, lean mouse with characteristics suggesting that someday, using medication to manipulate a specific protein in humans could emerge as a strategy to treat obesity and disorders associated with excess weight, such as diabetes and metabolic syndrome.

To create the hybrid, scientists crossed mice deficient in protein kinase C beta (PKCB) with the C57 black mouse, a common animal used in research for studying diabetes and obesity.

“These animals can eat more than normal. And they have less fat than normal. That’s a dream come true if it can be extended to human beings,” said Kamal Mehta, senior author of the study and a professor of molecular and cellular biochemistry at Ohio State University.

He noted, however, that an appropriate therapy for humans would take years to develop.

At first glance, compared to mice with no deficiency, these new hybrid mice were smaller and leaner. And when the researchers looked under their skin, they saw the mice had less fat distribution in the skin itself and less fat tissue overall. They also had less fat in their livers and muscles. The fat cells they did have were smaller than fat cells in other mice.

And despite the propensity for obesity from their original genes, the new mice lost weight while eating up to 30 percent more food than other mice. This means their lower weight was not caused by less eating, suggesting the protein deficiency corrected for the obesity tendencies by increasing the hybrids’ ability to burn fat, said Mehta, an investigator in Ohio State’s Davis Heart and Lung Research Institute.

The research is published in a recent issue of the Journal of Biological Chemistry.

Based on his previous research on the role of PKCB in metabolism, Mehta expected a deficiency of the protein to affect how the body processes triglycerides, or fat stored in body tissue.

“The bottom line is we were the first to show that this deficiency leads to a lean animal. The next question is why,” Mehta said. “In order to answer why, we need to know which genes are changed in these knockout animals.”

The most prominent effect the scientists have been able to identify so far relates to the mitochondria, the principal energy source of cells. Mehta said the new hybrid mice have more mitochondria within their cells than do normal mice, and that the added energy source allows them to convert fatty acids into energy.

“We have shown to some extent that there is increased fatty acid oxidation. We found that they use more oxygen, so that means they are using this oxygen to metabolize fat, convert it into carbon dioxide and expel it when they breathe,” said Madhu Mehta, a clinical consultant and co-author on the study and assistant professor of internal medicine at Ohio State.

The research group is testing this finding with an additional experiment, introducing the PKCB deficiency to animals with a lower production of mitochondria to see if the level of mitochondria increases when the protein is not present.

More work also needs to be done to determine whether the protein could be deficient in just certain types of cells to produce the same effect – for example, by eliminating the protein from only liver cells or fat tissue cells rather than throughout the body. Under current circumstances, the deficiency is present in the entire mouse genome.

“So we need to find which specific tissue needs the deficiency. Once we know which tissue is crucial for this, we can target that,” Kamal Mehta said. “The whole idea is to be able to develop a drug that would safely create this deficiency in humans.”

Mehta also is leading a study testing the effect of PKCB deficiency on diabetes in particular, examining whether the disease can be prevented by the elimination of this protein. An excess of triglycerides in tissue can lead to insulin resistance, a hallmark of diabetes. Because the protein relates to how the body burns triglycerides, Mehta believes the deficiency also could play a role in preventing the disease from developing.

The deficiency does not appear to pose any health problems. The mice with the deficiency lived a normal lifespan and experienced no premature deaths.

It remains unknown whether the deficiency currently exists naturally in humans. “Genetic testing of lean people could help answer that question,” Mehta said.

This research was supported by the National Institutes of Health.

Co-authors on the study were Rishipal Bansode, Wei Huang and Sanjit Roy of the Department of Molecular and Cellular Biochemistry and the Davis Heart and Lung Research Institute.

Kamal Mehta | EurekAlert!
Further information:
http://www.osu.edu

Further reports about: Diabetes HDL-cholesterol Mehta PKCB Tissue deficiency mitochondria

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>