Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Growing old together: Yeast, worms and people may age by similar mechanisms

14.03.2008
A study published online today in Genome Research provides new insight into the evolutionary conservation of the genes and pathways associated with aging. This report describes the identification of conserved aging-related genes in simple model organisms that may lead to the characterization of similar genes playing a role in human aging and age-associated diseases.

While nearly all organisms experience aging, the underlying mechanisms have eluded geneticists and evolutionary biologists. Many different theories have been suggested, yet experimental evidence strongly suggests that aging is modulated, at least in part, by genetic factors. Previous studies have implicated a number of conserved genes in model organisms as regulators of aging, such as the Sirtuins and insulin/IGF1 receptors. However, no investigations to date have quantified the degree to which aging-related genes are conserved across the genome among distantly related species.

In the study published today, a group of researchers led by Drs. Matt Kaeberlein and Brian Kennedy of the University of Washington conducted a genome-wide analysis of the yeast Saccharomyces cerevisiae and the nematode worm Caenorhabditis elegans, to identify genes that may regulate aging in humans. “Nematodes and humans are more similar to each other on an evolutionary scale than nematodes and yeast,” explains Dr. Erica Smith, primary author of the study. “We reasoned that if a particular gene modulates aging in both yeast and nematodes, there is a good chance that gene plays a similar role in people.”

The researchers compiled a set of 276 C. elegans genes that were known to modulate aging, and scanned the yeast genome for genes with highly similar sequences. The highly similar yeast genes were then individually analyzed for a potential role in longevity by measuring the life span of yeast cells lacking each gene. “Our study identified 25 genes that regulate aging in both yeast and nematodes, 22 of which were not previously known to be conserved modulators of aging,” says Kaeberlein. As 15 of the 25 yeast genes are highly similar to known human genes, Kaeberlein adds that this work is readily applicable to human aging research. “It is reasonable to speculate that many of the genes identified in our study also regulate longevity in humans.”

... more about:
»Kaeberlein »nematode »organism »pathways »yeast

In addition to identifying related pairs of aging-associated genes in yeast and nematodes, the group also investigated whether these genes are involved in common functional pathways. “We find that there is significant overlap between nematode and yeast aging genes, particularly those in nutrient-response pathways,” describes Kennedy. Signaling pathways involved in the response to nutrients have previously been implicated in the regulation of aging. “This finding indicates that two very different species age through overlapping mechanisms and suggests that these mechanisms are likely to also contribute to human aging.“

The genes identified in this study now provide a foundation for extending this research to a higher model organism, and ultimately for understanding human aging. “It will be important to determine how each of these genes modulate aging at the molecular level, and to test whether they also modulate aging in a mammalian model, such as mice,” says Kaeberlein. “In principle, any of these genes could be a useful therapeutic target for treating age-associated diseases.“

Peggy Calicchia | EurekAlert!
Further information:
http://www.cshl.org
http://www.genome.org

Further reports about: Kaeberlein nematode organism pathways yeast

More articles from Life Sciences:

nachricht Molecular libraries for organic light-emitting diodes
24.04.2017 | Goethe-Universität Frankfurt am Main

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Molecular libraries for organic light-emitting diodes

24.04.2017 | Life Sciences

Research sheds new light on forces that threaten sensitive coastlines

24.04.2017 | Earth Sciences

Making lightweight construction suitable for series production

24.04.2017 | Machine Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>