Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Although Controversial, Stem Cell Therapies Exhibit Potential in Biotechnology Markets

12.06.2002


Stem cells have enormous potential for repairing damage to the body caused by disease, injury, or aging. When introduced into an injured area of a patient, a stem cell could survive and repopulate the region with different types of cells, forming normal tissue.



Stem cells also offer the prospect of treating many inherited diseases caused by a single, defective gene. Though other treatments are available, such as gene therapy, the longevity of benefits from stem cell treatment provides a tantalizing option for researchers.

Heated controversy has arisen over the ethics of using embryonic stem cells, extracted from either very early embryos or fetuses. The United States has now limited stem cell use to a relatively small number of existing cell lines.


Stem cells are pluripotent, possessing the ability to differentiate into other types of cells. However, other stem cells, which are not derived from embryos and not completely pluripotent, have great potential to differentiate into cells, redeveloping certain tissues or organs. Hematopoietic cells, found in the bone marrow and umbilical cord, for example, can differentiate into all types of blood cells.

In order to make stem cell therapy a reality, it is not only necessary to have suitable stem cells, but also to know how to direct their differentiation and formation of new tissues. Scientists have begun to make new discoveries concerning genes and their protein products that govern various types of cell differentiation, but additional research is imperative.

Stem cell therapies are inherently more complicated than drug treatment, providing a stumbling block for stem cell therapy in the marketplace. However, while stem cell therapy remains costly, it will almost certainly last for several years before the procedure must be repeated. A low annual cost of $2500 per patient for stem cell therapy products at the manufacturer’s level is an average cost spread over several years.

While stem cells offer the possibility of treating many inherited diseases caused by a single defective gene, this disease group is composed of a very large number of different diseases, each one often affecting only a small number of people. Separate therapies will have to be developed for each one of them. Nevertheless, stem cells should be able to compete with replacement therapy with recombinant proteins to address many of these disorders.

New analysis by Technical Insights, a business unit of Frost & Sullivan (http://www.ti.frost.com), featured in Genetic Technology Alert, highlights nine biotech companies which are developing innovative stem cell products, providing new avenues to medical breakthroughs.

Frost & Sullivan is a global leader in strategic market consulting and training. Acquired by Frost & Sullivan, Technical Insights is an international technology research business that produces a variety of technical news alerts, newsletters, and reports. The ongoing research on stem cell therapy is covered in Genetic Technology Alert, a Technical Insights subscription and in Proteomics, a Technical Insights technology analysis. Analyst interviews are available to the press upon request.

Genetic Technology Alert

Contact:
Julia Rowell
P: 210.247.3870
F: 210.348.1003
E: jrowell@frost.com

Julia Rowell | EurekAlert
Further information:
http://www.frost.com
http://www.technical-insights.frost.com

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>