Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research study shows how proteins may develop new ways of treating breast cancer

14.03.2008
A major research study based at the University of Southampton is looking into how specific proteins, which are involved in the growth and survival of breast cancer cells, may help to develop new ways of treating breast cancer.

The study, led by Dr Jeremy Blaydes, will explore how one specific group of molecules called C-Terminal Binding Proteins (CtBPs) prevent breast cancer cell death and encourage cell growth.

Scientists have shown that in breast cancer cells, CtBPs act to prevent another molecule - p53, which is vital in causing cell death, from doing its job, so breast cancer cells continue to grow rather than die.

Dr Blaydes study will investigate exactly how CtBPs keep breast cancer cells alive and then develop a way of experimentally changing CtBPs in order to promote the death of breast cancer cells.

... more about:
»Blaydes »CtBP »cancer cells »proteins

Dr Jeremy Blaydes, of the Cancer Sciences Division in the University's School of Medicine, said: "What we can show is that cancer cells need CtBPs to stay alive, so we've devised a laboratory technique to prevent cancer cells producing these proteins. We're trying to understand what it is about CtBPs that the cancer cells need, so we can develop therapies to prevent cancers from developing.

"Breast cancer not only affects those diagnosed with the disease, but the lives of friends and family, so it is vitally important that we are utterly committed to working towards improved diagnosis, treatment, prevention and cure."

The research is funded over three years by the Breast Cancer Campaign (BCC), a charity which specialises in funding independent breast cancer research throughout the UK. Dr Blaydes has discovered with previous BCC funding that current chemotherapies can work, in part, by inhibiting CtBP function in breast cancer cells.

Dr Blaydes adds: "By knowing more about CtBPs, we hope to improve our knowledge of how to use chemotherapy treatments more effectively."

Glenn Harris | alfa
Further information:
http://www.soton.ac.uk

Further reports about: Blaydes CtBP cancer cells proteins

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>