Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research study shows how proteins may develop new ways of treating breast cancer

14.03.2008
A major research study based at the University of Southampton is looking into how specific proteins, which are involved in the growth and survival of breast cancer cells, may help to develop new ways of treating breast cancer.

The study, led by Dr Jeremy Blaydes, will explore how one specific group of molecules called C-Terminal Binding Proteins (CtBPs) prevent breast cancer cell death and encourage cell growth.

Scientists have shown that in breast cancer cells, CtBPs act to prevent another molecule - p53, which is vital in causing cell death, from doing its job, so breast cancer cells continue to grow rather than die.

Dr Blaydes study will investigate exactly how CtBPs keep breast cancer cells alive and then develop a way of experimentally changing CtBPs in order to promote the death of breast cancer cells.

... more about:
»Blaydes »CtBP »cancer cells »proteins

Dr Jeremy Blaydes, of the Cancer Sciences Division in the University's School of Medicine, said: "What we can show is that cancer cells need CtBPs to stay alive, so we've devised a laboratory technique to prevent cancer cells producing these proteins. We're trying to understand what it is about CtBPs that the cancer cells need, so we can develop therapies to prevent cancers from developing.

"Breast cancer not only affects those diagnosed with the disease, but the lives of friends and family, so it is vitally important that we are utterly committed to working towards improved diagnosis, treatment, prevention and cure."

The research is funded over three years by the Breast Cancer Campaign (BCC), a charity which specialises in funding independent breast cancer research throughout the UK. Dr Blaydes has discovered with previous BCC funding that current chemotherapies can work, in part, by inhibiting CtBP function in breast cancer cells.

Dr Blaydes adds: "By knowing more about CtBPs, we hope to improve our knowledge of how to use chemotherapy treatments more effectively."

Glenn Harris | alfa
Further information:
http://www.soton.ac.uk

Further reports about: Blaydes CtBP cancer cells proteins

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>