Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Research study shows how proteins may develop new ways of treating breast cancer

A major research study based at the University of Southampton is looking into how specific proteins, which are involved in the growth and survival of breast cancer cells, may help to develop new ways of treating breast cancer.

The study, led by Dr Jeremy Blaydes, will explore how one specific group of molecules called C-Terminal Binding Proteins (CtBPs) prevent breast cancer cell death and encourage cell growth.

Scientists have shown that in breast cancer cells, CtBPs act to prevent another molecule - p53, which is vital in causing cell death, from doing its job, so breast cancer cells continue to grow rather than die.

Dr Blaydes study will investigate exactly how CtBPs keep breast cancer cells alive and then develop a way of experimentally changing CtBPs in order to promote the death of breast cancer cells.

... more about:
»Blaydes »CtBP »cancer cells »proteins

Dr Jeremy Blaydes, of the Cancer Sciences Division in the University's School of Medicine, said: "What we can show is that cancer cells need CtBPs to stay alive, so we've devised a laboratory technique to prevent cancer cells producing these proteins. We're trying to understand what it is about CtBPs that the cancer cells need, so we can develop therapies to prevent cancers from developing.

"Breast cancer not only affects those diagnosed with the disease, but the lives of friends and family, so it is vitally important that we are utterly committed to working towards improved diagnosis, treatment, prevention and cure."

The research is funded over three years by the Breast Cancer Campaign (BCC), a charity which specialises in funding independent breast cancer research throughout the UK. Dr Blaydes has discovered with previous BCC funding that current chemotherapies can work, in part, by inhibiting CtBP function in breast cancer cells.

Dr Blaydes adds: "By knowing more about CtBPs, we hope to improve our knowledge of how to use chemotherapy treatments more effectively."

Glenn Harris | alfa
Further information:

Further reports about: Blaydes CtBP cancer cells proteins

More articles from Life Sciences:

nachricht International team discovers novel Alzheimer's disease risk gene among Icelanders
24.10.2016 | Baylor College of Medicine

nachricht New bacteria groups, and stunning diversity, discovered underground
24.10.2016 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>