Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research study shows how proteins may develop new ways of treating breast cancer

14.03.2008
A major research study based at the University of Southampton is looking into how specific proteins, which are involved in the growth and survival of breast cancer cells, may help to develop new ways of treating breast cancer.

The study, led by Dr Jeremy Blaydes, will explore how one specific group of molecules called C-Terminal Binding Proteins (CtBPs) prevent breast cancer cell death and encourage cell growth.

Scientists have shown that in breast cancer cells, CtBPs act to prevent another molecule - p53, which is vital in causing cell death, from doing its job, so breast cancer cells continue to grow rather than die.

Dr Blaydes study will investigate exactly how CtBPs keep breast cancer cells alive and then develop a way of experimentally changing CtBPs in order to promote the death of breast cancer cells.

... more about:
»Blaydes »CtBP »cancer cells »proteins

Dr Jeremy Blaydes, of the Cancer Sciences Division in the University's School of Medicine, said: "What we can show is that cancer cells need CtBPs to stay alive, so we've devised a laboratory technique to prevent cancer cells producing these proteins. We're trying to understand what it is about CtBPs that the cancer cells need, so we can develop therapies to prevent cancers from developing.

"Breast cancer not only affects those diagnosed with the disease, but the lives of friends and family, so it is vitally important that we are utterly committed to working towards improved diagnosis, treatment, prevention and cure."

The research is funded over three years by the Breast Cancer Campaign (BCC), a charity which specialises in funding independent breast cancer research throughout the UK. Dr Blaydes has discovered with previous BCC funding that current chemotherapies can work, in part, by inhibiting CtBP function in breast cancer cells.

Dr Blaydes adds: "By knowing more about CtBPs, we hope to improve our knowledge of how to use chemotherapy treatments more effectively."

Glenn Harris | alfa
Further information:
http://www.soton.ac.uk

Further reports about: Blaydes CtBP cancer cells proteins

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>