Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify new longevity genes

13.03.2008
Scientists at the University of Washington and other institutions have identified 25 genes regulating lifespan in two organisms separated by about 1.5 billion years in evolutionary change.

At least 15 of those genes have very similar versions in humans, suggesting that scientists may be able to target those genes to help slow down the aging process and treat age-related conditions. The study will be published online by the journal Genome Research on March 13.

The two organisms used in this study, the single-celled budding yeast and the roundworm C. elegans, are commonly used models for aging research. Finding genes that are conserved between the two organisms is significant, researchers say, because the two species are so far apart on the evolutionary scale -- even farther apart than the tiny worms and humans. That, combined with the presence of similar human genes, is an indication that these genes could regulate human longevity as well.

"Now that we know what many of these genes actually are, we have potential targets to go after in humans," said Brian Kennedy, UW associate professor of biochemistry and one of the senior authors of the study. "We hope that in the future we could affect those targets and improve not just lifespan, but also the 'health span' or the period of a person's life when they can be healthy and not suffer from age-related illnesses."

... more about:
»Aging »Target »lifespan »organism »yeast

Several of the genes that the scientists identified as being involved in aging are also connected to a key nutrient response pathway known as known as the Target of Rapamycin, or TOR. That finding gives more evidence to the theory that calorie intake and nutrient response affect lifespan by altering TOR activity. Previous studies have found that drastically restricting the caloric intake of organisms, an approach known as dietary restriction, can prolong their lifespan and reduce the incidence of age-related diseases. TOR inhibitors are being tested clinically in people for anti-cancer properties, and this work suggests they may also be useful against a variety of age-associated diseases.

"What we'd like to eventually do is be able to mimic the effects of dietary restriction with a drug," explained Matt Kaeberlein, another senior author on the paper and a UW assistant professor of pathology. "Most people don't want to cut their diet that drastically, just so they may live a little longer. But someday in the future, we may be able to accomplish the same thing with a pill."

These findings also give new insight into the genetic basis of aging, the scientists said, and provide some of the first quantitative evidence that genes regulating aging have been conserved during the process of evolution. Earlier evolutionary theories suggested that aging was not genetically controlled, since an organism does not get any advantage in natural selection by having a very long lifespan that goes far past their reproductive age.

To find these lifespan-controlling genes, the scientists took a genomic approach to comprehensively examine genes that affect aging in yeast and worms. Based on published reports, they first identified 276 genes in C. elegans that affected aging, and then searched for similar genetic sequences in the yeast genome. Of the 25 aging-related genes they found in both worms and yeast, only three had been previously thought to be conserved across many organisms.

Justin Reedy | EurekAlert!
Further information:
http://www.washington.edu

Further reports about: Aging Target lifespan organism yeast

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>