Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists identify new longevity genes

Scientists at the University of Washington and other institutions have identified 25 genes regulating lifespan in two organisms separated by about 1.5 billion years in evolutionary change.

At least 15 of those genes have very similar versions in humans, suggesting that scientists may be able to target those genes to help slow down the aging process and treat age-related conditions. The study will be published online by the journal Genome Research on March 13.

The two organisms used in this study, the single-celled budding yeast and the roundworm C. elegans, are commonly used models for aging research. Finding genes that are conserved between the two organisms is significant, researchers say, because the two species are so far apart on the evolutionary scale -- even farther apart than the tiny worms and humans. That, combined with the presence of similar human genes, is an indication that these genes could regulate human longevity as well.

"Now that we know what many of these genes actually are, we have potential targets to go after in humans," said Brian Kennedy, UW associate professor of biochemistry and one of the senior authors of the study. "We hope that in the future we could affect those targets and improve not just lifespan, but also the 'health span' or the period of a person's life when they can be healthy and not suffer from age-related illnesses."

... more about:
»Aging »Target »lifespan »organism »yeast

Several of the genes that the scientists identified as being involved in aging are also connected to a key nutrient response pathway known as known as the Target of Rapamycin, or TOR. That finding gives more evidence to the theory that calorie intake and nutrient response affect lifespan by altering TOR activity. Previous studies have found that drastically restricting the caloric intake of organisms, an approach known as dietary restriction, can prolong their lifespan and reduce the incidence of age-related diseases. TOR inhibitors are being tested clinically in people for anti-cancer properties, and this work suggests they may also be useful against a variety of age-associated diseases.

"What we'd like to eventually do is be able to mimic the effects of dietary restriction with a drug," explained Matt Kaeberlein, another senior author on the paper and a UW assistant professor of pathology. "Most people don't want to cut their diet that drastically, just so they may live a little longer. But someday in the future, we may be able to accomplish the same thing with a pill."

These findings also give new insight into the genetic basis of aging, the scientists said, and provide some of the first quantitative evidence that genes regulating aging have been conserved during the process of evolution. Earlier evolutionary theories suggested that aging was not genetically controlled, since an organism does not get any advantage in natural selection by having a very long lifespan that goes far past their reproductive age.

To find these lifespan-controlling genes, the scientists took a genomic approach to comprehensively examine genes that affect aging in yeast and worms. Based on published reports, they first identified 276 genes in C. elegans that affected aging, and then searched for similar genetic sequences in the yeast genome. Of the 25 aging-related genes they found in both worms and yeast, only three had been previously thought to be conserved across many organisms.

Justin Reedy | EurekAlert!
Further information:

Further reports about: Aging Target lifespan organism yeast

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>