Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify new longevity genes

13.03.2008
Scientists at the University of Washington and other institutions have identified 25 genes regulating lifespan in two organisms separated by about 1.5 billion years in evolutionary change.

At least 15 of those genes have very similar versions in humans, suggesting that scientists may be able to target those genes to help slow down the aging process and treat age-related conditions. The study will be published online by the journal Genome Research on March 13.

The two organisms used in this study, the single-celled budding yeast and the roundworm C. elegans, are commonly used models for aging research. Finding genes that are conserved between the two organisms is significant, researchers say, because the two species are so far apart on the evolutionary scale -- even farther apart than the tiny worms and humans. That, combined with the presence of similar human genes, is an indication that these genes could regulate human longevity as well.

"Now that we know what many of these genes actually are, we have potential targets to go after in humans," said Brian Kennedy, UW associate professor of biochemistry and one of the senior authors of the study. "We hope that in the future we could affect those targets and improve not just lifespan, but also the 'health span' or the period of a person's life when they can be healthy and not suffer from age-related illnesses."

... more about:
»Aging »Target »lifespan »organism »yeast

Several of the genes that the scientists identified as being involved in aging are also connected to a key nutrient response pathway known as known as the Target of Rapamycin, or TOR. That finding gives more evidence to the theory that calorie intake and nutrient response affect lifespan by altering TOR activity. Previous studies have found that drastically restricting the caloric intake of organisms, an approach known as dietary restriction, can prolong their lifespan and reduce the incidence of age-related diseases. TOR inhibitors are being tested clinically in people for anti-cancer properties, and this work suggests they may also be useful against a variety of age-associated diseases.

"What we'd like to eventually do is be able to mimic the effects of dietary restriction with a drug," explained Matt Kaeberlein, another senior author on the paper and a UW assistant professor of pathology. "Most people don't want to cut their diet that drastically, just so they may live a little longer. But someday in the future, we may be able to accomplish the same thing with a pill."

These findings also give new insight into the genetic basis of aging, the scientists said, and provide some of the first quantitative evidence that genes regulating aging have been conserved during the process of evolution. Earlier evolutionary theories suggested that aging was not genetically controlled, since an organism does not get any advantage in natural selection by having a very long lifespan that goes far past their reproductive age.

To find these lifespan-controlling genes, the scientists took a genomic approach to comprehensively examine genes that affect aging in yeast and worms. Based on published reports, they first identified 276 genes in C. elegans that affected aging, and then searched for similar genetic sequences in the yeast genome. Of the 25 aging-related genes they found in both worms and yeast, only three had been previously thought to be conserved across many organisms.

Justin Reedy | EurekAlert!
Further information:
http://www.washington.edu

Further reports about: Aging Target lifespan organism yeast

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>