Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover how TB 'develops invincibility' against only available treatment for killer disease

13.03.2008
Scientists at the University of Leicester have uncovered a dramatic new twist in the battle against TB.

They have identified how the killer bacterium makes itself immune to a key component of the only effective treatment against the disease.

Earlier this month, a separate team of TB researchers at Leicester announced a new advance in their fight against the resurgence of TB in Britain. They isolated the molecular ‘weapons’ of the bacterium and are assessing ways to make the bacterium impotent.

Now, in new research published in the Journal of Biological Chemistry, another team from the Departments of Biochemistry and Chemistry at the University has shown how the TB bacteria becomes resistant to one of the only available treatments for the killer disease.

... more about:
»Moody »Pro-Drug »bacterium »enzyme »killer

Dr Peter Moody of the Biochemistry Department said: “Isoniazid is a pro-drug that an enzyme in the deadly bacteria itself makes active.”

“Using the technique of protein crystallography and the incredibly bright X-ray source of the European Synchrotron at Grenoble, my team and that of Professor Emma Raven of the Chemistry Department at Leicester along with Dr Katherine Brown of Imperial College have shown how the pro-drug binds to two very similar enzymes - and from this we can see how mutations in the bacterial enzyme protect it from the treatment.”

This is the first time anyone has seen the way the pro-drug binds to activating enzymes.

Dr Moody said "Drug-resistant forms of TB are approaching 10% of the 8000 cases a year in the UK, so understanding how this works is very important."

The researchers hope that this new understanding will help drug companies devise treatments for the resistant strains.

The study, funded by BBSRC, is published this week in the Journal of Biological Chemistry*.

Dr Moody added: “Unfortunately, development of the UK synchrotron source (Diamond) is under threat because of the shortfall in funding, which could limit our ability to do this sort of fundamental medical research in the future”.

Ather Mirza | alfa
Further information:
http://www.le.ac.uk

Further reports about: Moody Pro-Drug bacterium enzyme killer

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>