Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Obesity Chokes up the Cellular Power Plant

Obesity associated with clear changes in gene-networks and dysfunction of mitochondria

The machinery responsible for energy production in fat cells is working poorly as a result of obesity. Finnish research done at the University of Helsinki and the National Public Health Institute shows that this may aggravate and work to maintain the obese state in humans.

Studying rare cases of young (25 year old) identical twins with large differences in bodyweight a Finnish research group has shown that already in the very early stages of obesity, clear changes in the function of the cellular mitochondria can be observed. Mitochondria are responsible for the energy production in cells and their dysfunction may work to maintain and worsen obesity. Surprisingly, the genes most drastically affected by obesity were ones involved in the breakdown of a class of amino acids known as branched-chain amino acids. These changes in the obese twins were clearly associated with pre-diabetic changes in sugar metabolism and the action of the hormone insulin.

The research is published in the latest edition of the science journal PLoS-Medicine (published and freely available online 11th of March).

Along with all its associated ailments, obesity is an ever increasing health concern. While healthy eating habits and exercise are important, genes do play their own important part in the development of obesity.

“Identical twins share all the same genes and almost always are also identical in weight. Studying identical twins that do differ in weight is the best approach we have to get at the mechanisms involved in the interplay between genes and environment that result in obesity”, explains research scientist Kirsi Pietiläinen from the department of Public Health at the University of Helsinki, Finland. In a large collection of 650 pairs of Finnish twins born between the years 1975 and 1979, the researchers were able to identify only 18 pairs that at the age of 25 had developed more than a 10 kg (22 lb) difference in weight. The body composition and metabolism of 14 of these pairs was carefully studied and a sample of their fat was also obtained.

In a case where one of the identical twins is considerably heavier than the other, the reason behind this is not in the genes. Regardless of their identical genes, these genes can however be active at a different level. The research took advantage of this condition in order to characterize those changes in gene activity in fat tissue that result from obesity.

The researchers identified that the fat cells of the obese twins contained fewer copies of the DNA located in mitochondria. This DNA contains the instructions for energy use by the cell. “If one were to compare this cellular power plant with a car engine, it could be said that the engine of the fat individual is less efficient”, Pietiläinen says. An inefficient mitochondrial engine can also put out toxic exhaust. A clear sign of inflammation was observed in the obese twins’ fat tissue –a sign of the poor health of the cells.

Another sign of dysfunction in the mitochondria was also the much decreased breakdown of these branched-chain amino acids. What makes this observation especially important is the fact that the decreased breakdown of these amino acids, and their resultant increased concentration in the blood, was directly associated with pre-diabetic changes, fattening of the liver and the excessive release of insulin by the pancreas.

The research employed a gene-chip technology that enabled the scientists to measure the activity of all human genes. “By employing a genomewide method, biostatistics and the unique set-up of these identical twins, we were able to uncover new mechanisms behind obesity and the early diabetic changes in the metabolism of the fat twins. In the future it will be important to determine whether these changes can be reversed by losing weight”, concludes Jussi Naukkarinen, a scientist at the department of Molecular Medicine, National Public Health Institute of Finland.

Paivi Lehtinen | alfa
Further information:

Further reports about: HDL-cholesterol amino amino acids associated mitochondria obese

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>