Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique puts DNA profiling of E. coli on fast track

11.03.2008
Using new genetic techniques, scientists are unlocking the secrets of how E coli bacteria contaminate food and make people sick.

Michigan State University has developed a new technique to test the DNA of E. coli bacteria by examining very small genetic changes called single nucleotide polymorphisms or SNPs (pronounced snips). Using SNPs, scientists analyzed 96 markers, making genetic analysis of pathogenic bacteria possible at a rate never before accomplished.

“It used to take three months to score one gene individually,” said Thomas Whittam, Hannah Distinguished Professor at the National Food Safety and Toxicology Center at MSU. “Now, we are working on a new, more rapid system that can do thousands of genes per day.”

In a new study released in the Monday edition of the Proceedings of the National Academy of Sciences, “Variation in Virulence Among Clades of Escherichia coli O157:H7 Associated With Disease Outbreaks,” Whittam and his co-authors looked at the DNA of more than 500 strains of a particularly dangerous member of the E. coli family, O157:H7. In collaboration with David Alland of the University of Medicine and Dentistry of New Jersey, Whittam discovered that individual bacteria could be separated into nine major groups, called clades.

... more about:
»Coli »DNA »E. coli »Whittam

E coli makes people sick because they produce toxins, called Shiga toxins. These toxins block protein synthesis, an essential cellular function, particularly in the kidneys. What Whittam found was that the different clades produced different kinds of Shiga toxins in varying amounts based on their DNA.

“For the first time, we know why some outbreaks cause serious infections and diseases and others don’t,” Whittam said. “The different E. coli groups produce different toxins.”

Rapid genetic characterization also opens up a new world of possibilities for identifying the bacterial culprits in outbreaks and finding out where they originated.

E. coli usually come from animal waste contaminating human sources of food or water. Finding out how the bacteria entered the food source always has been a challenge, but now food safety experts can use DNA just like police use DNA at crime scenes. Scientists will be able to identify those bacteria making people sick, find out where they entered the food source and then use this information to reduce contamination.

“This is the first time anyone has been able to classify very closely related groups,” Whittam said.

“This is also the first time we can tell the differences in how they cause disease.”

Whittam also has plans to use this methodology to study other bacterial strains, like Shigella, a major cause of diarrhea around the world. “This new equipment can be used to identify hundreds of thousands of pathogenic bacteria,” Whittam said.

Thomas Whittam | EurekAlert!
Further information:
http://www.msu.edu

Further reports about: Coli DNA E. coli Whittam

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>