Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mini-Donut Catches Chloride Ions

11.03.2008
Structurally stable macrocycle acts as chelate ligand for anions

Ions—charged atoms or molecules—play an important role in nature, in our bodies as well as for science and technology. It is often necessary to trap, remove, mask, stabilize, or transport ions, whether in the body or the lab. With positively charged metal ions, this goal is often achieved with chelate ligands, organic molecules that tightly grab hold of the ions.

However, it is difficult to develop suitable chelators for negatively charged anions such as chloride and fluoride. Amar Flood and Yongjun Li at Indiana University (Bloomington, USA) have now synthesized a donut-shaped molecule that tightly and selectively takes chloride ions up into its center. As they report in the journal Angewandte Chemie , bridging hydrogen bonds are responsible for holding the chloride ion in place.

Chelators (from the Greek word for pincer) are small organic molecules that grab onto atoms or other small molecules, holding them by means of multiple binding sites. Chelate therapy is used to absorb and remove heavy metals in cases of poisoning, for example. It is a breeze to bind cations in this way. The development of organic molecules whose positively charged “arms” are arranged so as to tightly and selectively bind anions has not been successful to date.

... more about:
»Anion »Atoms »Ion »bind »chelator »chloride »macrocycle

Flood and Li found their new anion chelator more or less by coincidence when they were producing various macrocycles by means of an inexpensive, flexible synthetic technique known as “click chemistry”, which is a simple and efficient way to put molecules together into large entities. The researchers “clicked” four small rings together to form a large ring. This process also generates four more rings, made of three nitrogen atoms and two carbon atoms (triazole rings). These are not only by-products of the click chemistry, they are essential for binding the chloride ion, which can comfortably nestle into the empty center of the large donut-shaped ring. The triazoles hold on to the chloride ion by means of bridging hydrogen bonds, which is amazing because it was previously assumed that hydrogen bonds were not strong enough to form a sufficiently stable bond between a halogen ion and a chelate complex. It is probably vital that the binding sites in the structurally stable macrocycle are preorganized into the correct configuration so that the chelator does not have to rearrange itself around the ion before binding can occur, as is the case for open-chain chelators.

The four other nonbinding rings of the macrocycle can be varied almost as desired, so the researchers hope to generate a whole family of new chelators that are able to bind a spectrum of other anions with high specificity.

Author: Amar H. Flood, Indiana University, Bloomington (USA), http://flood.chem.indiana.edu/

Title: Pure C-H Hydrogen Bonding to Chloride Ions: A Preorganized and Rigid Macrocyclic Receptor

Angewandte Chemie International Edition 2008, 47, No. 14, 2649–2652, doi: 10.1002/anie.200704717

Amar H. Flood | Angewandte Chemie
Further information:
http://flood.chem.indiana.edu/
http://pressroom.angewandte.org

Further reports about: Anion Atoms Ion bind chelator chloride macrocycle

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>