Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Increased Level Of Magnetic Iron Oxides Found In Alzheimer’s Disease

10.03.2008
A team of scientists, led by Professor Jon Dobson, of Keele University in Staffordshire, UK, have found, for the first time, raised levels of magnetic iron oxides in the part of the brain affected by Alzheimer's Disease (AD).

Their research has also shown that this association was particularly strong in females compared to males. The group speculates that this may be a result of gender differences in the way the body handles and stores iron.

Though the results are based on a small number of samples, they give an indication that iron accumulation associated with Alzheimer's appears to involve the formation of strongly magnetic iron compounds. As these compounds have a strong effect on MRI signal intensity, with further study, it may be possible to use this as a biomarker for the development of an MRI-based Alzheimer's diagnostic technique.

The research team also included Quentin Pankhurst, London Centre for Nanotechnology and Department of Physics & Astronomy, University College, London; Dimitri Hautot, Institute of Science and Technology in Medicine, Keele University, and Nadeem Khan, Department of Neuropathology, Institute of Psychiatry, King's College London.

... more about:
»Iron »associated »concentration »magnetite »subjects

The study looked at brain tissue from 11 Alzheimer’s Disease and 11 age-matched control subjects. It showed, for the first time, that the total concentration of biogenic magnetite is generally higher in the Alzheimer brain (in some cases as much as 15 times greater than controls) and that there are gender-based differences, with Alzheimer’s Disease with female subjects having significantly higher concentrations than all other groups.

Professor Dobson said: “Iron accumulation and dysregulation of iron transport and storage has been found to be associated with many other neurodegenerative conditions, such as Parkinson’s disease, Huntington’s disease (HD), multiple sclerosis and Amyotrophic Lateral Sclerosis. In recent years, a hereditary neurodegenerative disease, neuroferritinopathy, has been linked to a mutation in the gene encoding for the ferritn light polypeptide. This direct link between neurodegeneration in the basal ganglia and ferritin, the body’s primary iron storage protein, results in the accumulation of iron in the brain and symptoms similar to HD.

“There is still little known about the chemical form of iron associated with these diseases, its role in neurodegeneration (if any) and its origin. Investigations of brain iron based on histochemical staining techniques have generally ignored its chemical state.”

This study shows a clear correlation in the concentration and the size of the biogenic magnetite in both the Alzheimer disease and control groups. It is also notable that the largest magnetite concentrations and smallest particles are all from Alzheimer disease subjects, and that the data from the control subjects follow the same trend. This implies that the genesis of the biogenic magnetite may be the same in all cases, but that in Alzheimer Disease it may be more indicative of an accelerated process.

Professor Dobson added: “We speculate that magnetite formation within the ferritin core may occur generally in the brain, perhaps associated with aging, and that the process may become abnormal and uncontrolled in the Alzheimer brain. At this stage, this should be considered a working hypothesis and needs to be examined in larger studies. It appears, however, that elevated levels of magnetic iron oxides, which include reactive Fe2+, are present in AD tissue, a finding that lends weight to the suggestion that redox-active iron may play a role in neurodegenerative disease."

This work was supported by the UK Medical Research Council and National Institutes of Health.

A paper on the study, Increased Levels of Magnetic Compunds in Alzheimer’s Disease, is scheduled for publication in the Journal of Alzheimer's Disease (Volume 13:1).

Chris Stone | alfa
Further information:
http://www.keele.ac.uk

Further reports about: Iron associated concentration magnetite subjects

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>