Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Increased Level Of Magnetic Iron Oxides Found In Alzheimer’s Disease

10.03.2008
A team of scientists, led by Professor Jon Dobson, of Keele University in Staffordshire, UK, have found, for the first time, raised levels of magnetic iron oxides in the part of the brain affected by Alzheimer's Disease (AD).

Their research has also shown that this association was particularly strong in females compared to males. The group speculates that this may be a result of gender differences in the way the body handles and stores iron.

Though the results are based on a small number of samples, they give an indication that iron accumulation associated with Alzheimer's appears to involve the formation of strongly magnetic iron compounds. As these compounds have a strong effect on MRI signal intensity, with further study, it may be possible to use this as a biomarker for the development of an MRI-based Alzheimer's diagnostic technique.

The research team also included Quentin Pankhurst, London Centre for Nanotechnology and Department of Physics & Astronomy, University College, London; Dimitri Hautot, Institute of Science and Technology in Medicine, Keele University, and Nadeem Khan, Department of Neuropathology, Institute of Psychiatry, King's College London.

... more about:
»Iron »associated »concentration »magnetite »subjects

The study looked at brain tissue from 11 Alzheimer’s Disease and 11 age-matched control subjects. It showed, for the first time, that the total concentration of biogenic magnetite is generally higher in the Alzheimer brain (in some cases as much as 15 times greater than controls) and that there are gender-based differences, with Alzheimer’s Disease with female subjects having significantly higher concentrations than all other groups.

Professor Dobson said: “Iron accumulation and dysregulation of iron transport and storage has been found to be associated with many other neurodegenerative conditions, such as Parkinson’s disease, Huntington’s disease (HD), multiple sclerosis and Amyotrophic Lateral Sclerosis. In recent years, a hereditary neurodegenerative disease, neuroferritinopathy, has been linked to a mutation in the gene encoding for the ferritn light polypeptide. This direct link between neurodegeneration in the basal ganglia and ferritin, the body’s primary iron storage protein, results in the accumulation of iron in the brain and symptoms similar to HD.

“There is still little known about the chemical form of iron associated with these diseases, its role in neurodegeneration (if any) and its origin. Investigations of brain iron based on histochemical staining techniques have generally ignored its chemical state.”

This study shows a clear correlation in the concentration and the size of the biogenic magnetite in both the Alzheimer disease and control groups. It is also notable that the largest magnetite concentrations and smallest particles are all from Alzheimer disease subjects, and that the data from the control subjects follow the same trend. This implies that the genesis of the biogenic magnetite may be the same in all cases, but that in Alzheimer Disease it may be more indicative of an accelerated process.

Professor Dobson added: “We speculate that magnetite formation within the ferritin core may occur generally in the brain, perhaps associated with aging, and that the process may become abnormal and uncontrolled in the Alzheimer brain. At this stage, this should be considered a working hypothesis and needs to be examined in larger studies. It appears, however, that elevated levels of magnetic iron oxides, which include reactive Fe2+, are present in AD tissue, a finding that lends weight to the suggestion that redox-active iron may play a role in neurodegenerative disease."

This work was supported by the UK Medical Research Council and National Institutes of Health.

A paper on the study, Increased Levels of Magnetic Compunds in Alzheimer’s Disease, is scheduled for publication in the Journal of Alzheimer's Disease (Volume 13:1).

Chris Stone | alfa
Further information:
http://www.keele.ac.uk

Further reports about: Iron associated concentration magnetite subjects

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>