Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers See History Of Life In The Structure Of Transfer RNA

07.03.2008
Transfer RNA is an ancient molecule, central to every task a cell performs and thus essential to all life. A new study from the University of Illinois indicates that it is also a great historian, preserving some of the earliest and most profound events of the evolutionary past in its structure.

The study, co-written by Gustavo Caetano-Anollés, a professor of crop sciences, and postdoctoral researcher Feng-Jie Sun, appears March 7 in PLoS Computational Biology. Caetano-Anollés is an affiliate of the U. of I. Institute for Genomic Biology.

Of the thousands of RNAs so far identified, transfer RNA (tRNA) is the most direct intermediary between genes and proteins. Like many other RNAs (ribonucleic acids), tRNA aids in translating genes into the chains of amino acids that make up proteins. With the help of a highly targeted enzyme, each tRNA molecule recognizes and latches onto a specific amino acid, which it carries into the protein-building machinery. In order to successfully add its amino acid to the end of a growing protein, tRNA must also accurately read a coded segment of messenger RNA, which gives instructions for the exact sequence of amino acids in the protein.

The fact that tRNA is so central to the task of building proteins probably means that it has been around for a long time, Caetano-Anollés said. His inquiry began with a hunch that understanding the structural properties of tRNA would shed light on how organisms and viruses evolved.

... more about:
»Caetano-Anollés »RNA »amino »superkingdoms »tRNA

“Perhaps in evolution there are things that are so fundamental that they are kept, held onto, for millions or even billions of years,” Caetano-Anollés said. “Those are the fossils, the molecular fossils, that tell us about the past. “Therefore, studying these molecules can address fundamental questions in biology and evolution.”

All tRNAs assemble themselves into a shape that, if flattened, resembles a cloverleaf. The team began by looking for patterns in this cloverleaf structure, using detailed data from hundreds of molecules representing viruses and each of the three superkingdoms of life: archaea, bacteria and eukarya.

The researchers converted all distinguishing features of the individual tRNA cloverleaf structures into coded characters, a process that allowed a computerized search for the most “parsimonious” (that is, the simplest, most probable) tRNA family tree. They conducted the same analysis on the tRNAs of each of the superkingdoms, to see how far these groupings diverged from the overall tree. This comparison allowed them to determine the order in which viruses and each of the superkingdoms diverged.

The new analysis supports an earlier study that suggested that the archaea were the first to arise as an evolutionarily distinguishable group. Archaea are microbes that can survive in boiling acid, near sulfurous ocean vents or in other extreme environments. The earlier study, also led by Caetano-Anollés, analyzed the vast catalog of protein folds – those precisely configured regions in proteins that give them their functionality – as a guidebook to evolutionary history.

“The transfer RNA data matches our earlier data,” Caetano-Anollés said. “This is important because two lines of independent evidence are supporting each other.”

The new analysis also indicates that viruses emerged not long after the archaea, with the superkingdoms eukarya and bacteria following much later – and in that order. This finding may influence the ongoing debate over whether viruses existed prior to, or after, the emergence of living cells, Caetano-Anollés said.

“This supports the idea that viruses arose from the cellular domain,” he said.

Diana Yates | University of Illinois
Further information:
http://www.uiuc.edu

Further reports about: Caetano-Anollés RNA amino superkingdoms tRNA

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
19.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>