Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers See History Of Life In The Structure Of Transfer RNA

07.03.2008
Transfer RNA is an ancient molecule, central to every task a cell performs and thus essential to all life. A new study from the University of Illinois indicates that it is also a great historian, preserving some of the earliest and most profound events of the evolutionary past in its structure.

The study, co-written by Gustavo Caetano-Anollés, a professor of crop sciences, and postdoctoral researcher Feng-Jie Sun, appears March 7 in PLoS Computational Biology. Caetano-Anollés is an affiliate of the U. of I. Institute for Genomic Biology.

Of the thousands of RNAs so far identified, transfer RNA (tRNA) is the most direct intermediary between genes and proteins. Like many other RNAs (ribonucleic acids), tRNA aids in translating genes into the chains of amino acids that make up proteins. With the help of a highly targeted enzyme, each tRNA molecule recognizes and latches onto a specific amino acid, which it carries into the protein-building machinery. In order to successfully add its amino acid to the end of a growing protein, tRNA must also accurately read a coded segment of messenger RNA, which gives instructions for the exact sequence of amino acids in the protein.

The fact that tRNA is so central to the task of building proteins probably means that it has been around for a long time, Caetano-Anollés said. His inquiry began with a hunch that understanding the structural properties of tRNA would shed light on how organisms and viruses evolved.

... more about:
»Caetano-Anollés »RNA »amino »superkingdoms »tRNA

“Perhaps in evolution there are things that are so fundamental that they are kept, held onto, for millions or even billions of years,” Caetano-Anollés said. “Those are the fossils, the molecular fossils, that tell us about the past. “Therefore, studying these molecules can address fundamental questions in biology and evolution.”

All tRNAs assemble themselves into a shape that, if flattened, resembles a cloverleaf. The team began by looking for patterns in this cloverleaf structure, using detailed data from hundreds of molecules representing viruses and each of the three superkingdoms of life: archaea, bacteria and eukarya.

The researchers converted all distinguishing features of the individual tRNA cloverleaf structures into coded characters, a process that allowed a computerized search for the most “parsimonious” (that is, the simplest, most probable) tRNA family tree. They conducted the same analysis on the tRNAs of each of the superkingdoms, to see how far these groupings diverged from the overall tree. This comparison allowed them to determine the order in which viruses and each of the superkingdoms diverged.

The new analysis supports an earlier study that suggested that the archaea were the first to arise as an evolutionarily distinguishable group. Archaea are microbes that can survive in boiling acid, near sulfurous ocean vents or in other extreme environments. The earlier study, also led by Caetano-Anollés, analyzed the vast catalog of protein folds – those precisely configured regions in proteins that give them their functionality – as a guidebook to evolutionary history.

“The transfer RNA data matches our earlier data,” Caetano-Anollés said. “This is important because two lines of independent evidence are supporting each other.”

The new analysis also indicates that viruses emerged not long after the archaea, with the superkingdoms eukarya and bacteria following much later – and in that order. This finding may influence the ongoing debate over whether viruses existed prior to, or after, the emergence of living cells, Caetano-Anollés said.

“This supports the idea that viruses arose from the cellular domain,” he said.

Diana Yates | University of Illinois
Further information:
http://www.uiuc.edu

Further reports about: Caetano-Anollés RNA amino superkingdoms tRNA

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>