Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular alliance that sustains embryonic stem cell state

06.03.2008
Allied proteins known as transcription factors

One of the four ingredients in the genetic recipe that scientists in Japan and the U.S. followed last year to persuade human skin cells to revert to an embryonic stem cell state, is dispensable in ES cells, thanks to the presence of a molecular alliance between a specific group of key proteins known as transcription factors, a research team led by the Genome Institute of Singapore (GIS) under the Agency for Science, Technology and Research (A*STAR) reports in the current issue of Nature Cell Biology.

The reprogramming factor - Klf4, one of the transcription factors that determine whether a cell's genes are active or silent - has at least two other sibling molecules that will substitute Klf4 to maintain a pluripotent embryonic stem (ES) cell state, the GIS-led team said.

Klf4 (also known as gut-enriched Krüppel-like factor or Gklf) belongs to the Krüppel-like factor (Klf) family of transcription factors that regulate numerous biological processes including proliferation, differentiation, development and apoptosis, or programmed cell death.

... more about:
»Embryonic »GIS »Klf »Klf4 »Nanog »Reprogramming »Stem »pluripotent

Since reprogramming mature cells to the ES state may provide a ready source of tissue for biomedical research and clinical treatment of diseases such as Parkinson's and diabetes, several laboratories, including GIS, are trying to better understand and finely tune the reprogramming process.

The team looks for clues for what these reprogramming ingredients are doing in ES cells.

"Klf4 has been a mysterious player among the four reprogramming factors. As taking out Klf4 in ES cells did not have any apparent effects, it is difficult to reconcile why such a potent reprogramming factor has no role in ES cell biology," said GIS scientist Ng Huck Hui, Ph.D., who headed the research team. Other members of the team include researchers from the National University of Singapore and University of Illinois at Urbana-Champaign.

The GIS research team found that when Klf4 was depleted, Klf2 and Klf5 took over Klf4's role. To understand the molecular basis of the Klf4 redundancy, the scientists studied the DNA binding and transcription activation properties of the three Klfs and found that the profiles of the three Klfs were strikingly similar.

"Most important, the data showed that the other Klfs were bound to the target sites when one of them was depleted." said Dr. Ng. "These Krüppel-like factors form a very powerful alliance that work together on regulating common targets. The impact of losing one of them is masked by the other two sibling molecules."

For example, Klfs were found to regulate the Nanog gene and other key genes that must be active for ES cells to be pluripotent, or capable of differentiating into virtually any type of cells. Nanog gene is one of the key pluripotency genes in ES cells.

"We suggest that Nanog and other genes are key effectors for the biological functions of the Klfs in ES cells," Dr. Ng said.

"Together, our study provides new insight into how the core Klf circuitry integrates into the Nanog transcriptional network to specify gene expression unique to ES cells.

The way these factors network with key genes in ES cells suggest a way of how Klf4 (along with the other three reprogramming factors) can jump-start the ES cell gene expression engine in adult cells," he noted.

Although these three Klfs are involved in diverse biological roles, their redundant roles have not been previously appreciated.

"Dr. Ng and his colleagues at the Genome Institute of Singapore again have unraveled another intricacy of what makes a stem cell," said Edison Liu, M.D., Executive Director of GIS. "This work brings us closer to a detailed understanding of the genetic components of stemness."

Alan Colman, Ph.D., internationally recognized leader in stem cell research, said, "Klf4 is a transcription factor that came to prominence recently because it was one of four factors used to reprogram somatic cells back to the pluripotent state seen in embryonic stem cells.

"The mystery of the role of Klf4 has been revealed in studies by Huck Hui and colleagues," added Colman, Executive Director of the Singapore Stem Cell Consortium, which like GIS, is part of Singapore's A*STAR. "They show for the first time that Klf4 itself is not needed for the maintenance of the pluripotent state in ES cells; however, this is because the cells have a number of other Klf-like transcription factors that can substitute for Klf4."

For enquiries, please contact the following:

Genome Institute of Singapore
Winnie Serah Lim
Asst Manager, Corporate Communications
Tel: (65) 6478 8013
(65) 9730 7884
Email: limcp2@gis.a-star.edu.sg

Cathy Yarbrough | EurekAlert!
Further information:
http://www.gis.a-star.edu.sg

Further reports about: Embryonic GIS Klf Klf4 Nanog Reprogramming Stem pluripotent

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>