Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Molecular alliance that sustains embryonic stem cell state

Allied proteins known as transcription factors

One of the four ingredients in the genetic recipe that scientists in Japan and the U.S. followed last year to persuade human skin cells to revert to an embryonic stem cell state, is dispensable in ES cells, thanks to the presence of a molecular alliance between a specific group of key proteins known as transcription factors, a research team led by the Genome Institute of Singapore (GIS) under the Agency for Science, Technology and Research (A*STAR) reports in the current issue of Nature Cell Biology.

The reprogramming factor - Klf4, one of the transcription factors that determine whether a cell's genes are active or silent - has at least two other sibling molecules that will substitute Klf4 to maintain a pluripotent embryonic stem (ES) cell state, the GIS-led team said.

Klf4 (also known as gut-enriched Krüppel-like factor or Gklf) belongs to the Krüppel-like factor (Klf) family of transcription factors that regulate numerous biological processes including proliferation, differentiation, development and apoptosis, or programmed cell death.

... more about:
»Embryonic »GIS »Klf »Klf4 »Nanog »Reprogramming »Stem »pluripotent

Since reprogramming mature cells to the ES state may provide a ready source of tissue for biomedical research and clinical treatment of diseases such as Parkinson's and diabetes, several laboratories, including GIS, are trying to better understand and finely tune the reprogramming process.

The team looks for clues for what these reprogramming ingredients are doing in ES cells.

"Klf4 has been a mysterious player among the four reprogramming factors. As taking out Klf4 in ES cells did not have any apparent effects, it is difficult to reconcile why such a potent reprogramming factor has no role in ES cell biology," said GIS scientist Ng Huck Hui, Ph.D., who headed the research team. Other members of the team include researchers from the National University of Singapore and University of Illinois at Urbana-Champaign.

The GIS research team found that when Klf4 was depleted, Klf2 and Klf5 took over Klf4's role. To understand the molecular basis of the Klf4 redundancy, the scientists studied the DNA binding and transcription activation properties of the three Klfs and found that the profiles of the three Klfs were strikingly similar.

"Most important, the data showed that the other Klfs were bound to the target sites when one of them was depleted." said Dr. Ng. "These Krüppel-like factors form a very powerful alliance that work together on regulating common targets. The impact of losing one of them is masked by the other two sibling molecules."

For example, Klfs were found to regulate the Nanog gene and other key genes that must be active for ES cells to be pluripotent, or capable of differentiating into virtually any type of cells. Nanog gene is one of the key pluripotency genes in ES cells.

"We suggest that Nanog and other genes are key effectors for the biological functions of the Klfs in ES cells," Dr. Ng said.

"Together, our study provides new insight into how the core Klf circuitry integrates into the Nanog transcriptional network to specify gene expression unique to ES cells.

The way these factors network with key genes in ES cells suggest a way of how Klf4 (along with the other three reprogramming factors) can jump-start the ES cell gene expression engine in adult cells," he noted.

Although these three Klfs are involved in diverse biological roles, their redundant roles have not been previously appreciated.

"Dr. Ng and his colleagues at the Genome Institute of Singapore again have unraveled another intricacy of what makes a stem cell," said Edison Liu, M.D., Executive Director of GIS. "This work brings us closer to a detailed understanding of the genetic components of stemness."

Alan Colman, Ph.D., internationally recognized leader in stem cell research, said, "Klf4 is a transcription factor that came to prominence recently because it was one of four factors used to reprogram somatic cells back to the pluripotent state seen in embryonic stem cells.

"The mystery of the role of Klf4 has been revealed in studies by Huck Hui and colleagues," added Colman, Executive Director of the Singapore Stem Cell Consortium, which like GIS, is part of Singapore's A*STAR. "They show for the first time that Klf4 itself is not needed for the maintenance of the pluripotent state in ES cells; however, this is because the cells have a number of other Klf-like transcription factors that can substitute for Klf4."

For enquiries, please contact the following:

Genome Institute of Singapore
Winnie Serah Lim
Asst Manager, Corporate Communications
Tel: (65) 6478 8013
(65) 9730 7884

Cathy Yarbrough | EurekAlert!
Further information:

Further reports about: Embryonic GIS Klf Klf4 Nanog Reprogramming Stem pluripotent

More articles from Life Sciences:

nachricht Make way for the mini flying machines
21.03.2018 | American Chemical Society

nachricht New 4-D printer could reshape the world we live in
21.03.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>