Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sticky blood protein yields clues to autism

06.03.2008
Many children with autism have elevated blood levels of serotonin – a chemical with strong links to mood and anxiety. But what relevance this “hyperserotonemia” has for autism has remained a mystery.

New research by Vanderbilt University Medical Center investigators provides a physical basis for this phenomenon, which may have profound implications for the origin of some autism-associated deficits.

In an advance online publication in the Journal of Clinical Investigation, Ana Carneiro, Ph.D., and colleagues report that a well-known protein found in blood platelets, integrin beta3, physically associates with and regulates the serotonin transporter (SERT), a protein that controls serotonin availability.

Autism, a prevalent childhood disorder, involves deficits in language, social communication and prominent rigid-compulsive traits. Serotonin has long been suspected to play a role in autism since elevated blood serotonin and genetic variations in the SERT have been linked to autism.

Alterations in brain serotonin have also been associated with anxiety, depression and alcoholism; antidepressants that block SERT (known as SSRIs, or selective serotonin reuptake inhibitors) block SERT’s ability to sweep synapses clean of serotonin.

Working in the lab of Randy Blakely, Ph.D., Carneiro was searching for proteins that interact with SERT that might contribute to disorders where serotonin signaling is altered.

“Levels of SERT in the brain are actually quite low, so we decided to see what progress we could make with peripheral cells that have much higher quantities,” said Blakely, the Allan D. Bass Professor of Pharmacology and director of the Vanderbilt Center for Molecular Neuroscience. “This took us to platelets.”

In platelets, SERTs accumulate serotonin produced in the gut. SSRIs or genetic deletion of SERT in animals prevents serotonin uptake in the platelet.

“Prior research had fingered the integrin beta3 gene as a determinant of blood serotonin levels and, independently, as a risk factor for autism,” Blakely said.

In the current study, Carneiro identified a large set of proteins that “stick” to SERT, presuming they might control SERT activity. One of these turned out to be integrin beta3.

Once they confirmed a physical relationship between the two proteins, Blakely’s team investigated whether the interaction can change SERT activity. They found that cells lacking integrin beta3 exhibit reduced serotonin uptake and that integrin beta3 activation or a human integrin beta3 mutation greatly enhances serotonin uptake.

“We found that integrin beta3 can put the serotonin transporter into high gear,” said Blakely. Notably, Edwin Cook, M.D., at the University of Illinois at Chicago and a co-author on the study, had shown that the same integrin beta3 mutation that elevates SERT activity also predicts elevated blood serotonin.

“Most investigators studying this integrin beta3 mutation have focused on how its high activity state changes platelet clotting and never looked at its impact on serotonin levels or SERT function,” explained Carneiro. “Now they have a reason to.”

“We don’t think the platelet itself contributes to autism,” said Blakely, “but rather we believe that the brain’s serotonin transporter may be controlled by integrin proteins in a very similar manner.”

Carneiro and Blakely believe that too much SERT activity imposed by abnormal integrin interactions could restrict availability of serotonin in the brain during development, as well as in the adult.

“What is even more striking is that this is the second time we have found elevated SERT activity associated with autism,” said Blakely. In a 2005 study, Blakely and Vanderbilt collaborator James Sutcliffe, Ph.D., identified mutations in the SERT gene that triggered elevated SERT activity.

Carneiro is now hot on the trail of integrin interactions with brain SERT as well as engineering mice that express human integrin beta3 mutations.

At a February Keystone Conference, Blakely described preliminary studies with mice that his lab has engineered to express hyperactive SERT mutations. “Together, these new animal models offer an unprecedented opportunity to peel away the complexity of autism and possibly develop new therapies,” he said.

This research also may uncover new ways of treating depression. “Current antidepressant mechanisms still essentially work in the same way they did 25 years ago – by targeting transporter uptake of neurotransmitter directly,” Carneiro said. “Now we may have a completely new way to go about it.”

Craig Boerner | EurekAlert!
Further information:
http://www.vanderbilt.edu

Further reports about: Autism Blakely Carneiro Integrin SERT Serotonin Transporter beta3 platelet

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>