Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New steroid test uses oil exploration technique

06.03.2008
It’s a technique that has previously been used for oil exploration — now researchers at The University of Nottingham have developed a new, highly sensitive, anti-doping steroid test using hydropyrolysis.

The process — which uses high pressure environments to investigate the chemical structure and make-up of a sample — has been refined and developed at the University to develop highly accurate tests for detecting levels of illicit steroids in urine. The test procedure is already in the process of being commercialised and is expected to be ready for use in the 2012 Olympics.

Funding from the Natural Environment Research Council’s Ocean Margins LINK programme saw researchers take the hydropyrolysis technique and apply it to geochemical studies. This allowed the team to reconstruct the history of ocean basins to help assess whether it was worth drilling for oil. By taking core samples over geological time, the technique can detect the first ’charge’, or presence, of oil.

But the same process can be used to detect the presence of illicit steroids in the urine of athletes — and racehorses. High pressure hydrogen is used to bombard the sample at pressures of 150 atmospheres and temperatures of up to 500 degrees Celsius. This leaves sample molecules in a cleaner, less degraded state than other extraction techniques, allowing more accurate readings to be taken. Carbon isotopes are then measured, with the results showing the ratios of carbon 12 and carbon 13 in the sample — whether geochemical or biological.

... more about:
»Steroid »isotope »sample

Colin Snape, Professor of Chemical Technology and Chemical Engineering at the University, said: “Steroids are produced naturally in the body, but they have a different carbon 13/carbon 12 ratios to those that have been introduced illicitly. By refining the measurements of these two isotopes we can produce a very accurate test for the presence of illegal steroids in athletes.

“We are currently working with the World Anti-Doping Agency (WADA) to develop the technique for trial and have entered into partnership with Strata Technology, a London-based company with expertise in high pressure equipment, to commercialise the technique.”

The technique is also being used to refine current radio carbon dating processes, which use the carbon 14 isotope to measure the age of an archaeological sample.

“Most of these samples use charcoal,” Professor Snape added. “But the stuff you are trying to accurately date is often mixed in with much later debris from the same site. Hydropyrolysis can remove this very rapidly and efficiently. We are hoping that this will become the accepted model for cleaning up radio carbon dating samples in the future — the fundamental research for this is taking place at the moment.”

Professor Snape is an expert on hydropyrolysis — he’s been working on the technique, both in industry and academia, for the past 25 years. Over the coming year he hopes to refine the testing process, exploring optimum sample sizes and checking the sensitivity of the technique, working with WADA and experts in steroid testing from Imperial College London.

Emma Thorne | alfa
Further information:
http://www.nottingham.ac.uk

Further reports about: Steroid isotope sample

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>