Leicester scientists seek to disarm TB's 'molecular weapon'

They have isolated the molecular ‘weapons’ of the bacterium and are now assessing ways to make the bacterium impotent.

Scientists in the University’s Department of Biochemistry are focusing on two proteins in the TB bacterium which, it is thought, allows it to thrive in white blood cells.

They are particularly examining a ‘long arm’ in a molecule of the bacterium which is thought to be used to bind onto white blood cells. The scientists are also seeking to identify which part of the white blood cell is being targeted.

Dr. Mark Carr, from the Department of Biochemistry said: “If you were to ask most people about TB, they would have most likely told you it was no longer a threat, merely a memory of a Britain with an undeveloped healthcare system.

“But TB is on the rise around the world with the number of new reported cases nearly doubling in the past 25 years. The World Health Organisation reported 8,500 instances in the UK in 2005.

“At the University of Leicester, our aim is to take the molecular ‘weapons’ of TB and isolate them, to understand their function and hopefully find a way to minimise their effects.

“One of the most important of these molecular weapons is known as the ESAT-6/CFP-10 complex. These are two proteins that bind together to become a functional unit, and it is thought that they may be needed to allow the bacteria to thrive inside white blood cells, as happens during the initial infection. Removal of the genes for this complex from the TB genome renders the bacteria unable to cause disease, exposing how important this particular weapon is to the bacteria.

“Similarly, studies of the structure of the protein complex have shown that removal of a ‘long arm’ from the molecule prevents the complex’s ability to bind to the outer surface of human white blood cells. This data has provided us with a potential insight into the important components of this complex.”

Dr. Carr added: “Current work is attempting to identify the exact components of the human white blood cells that this complex is targeting. Once found, this should give us a greater knowledge of the action of these molecular weapons of TB and give us the edge in the war against an ancient, reawakened foe.”

Media Contact

Ather Mirza alfa

More Information:

http://www.le.ac.uk

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors